Focus on siemens vulnerabilities and metrics.
Last updated: 08 Mar 2025, 23:25 UTC
This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with siemens. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.
For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.
Total siemens CVEs: 1653
Earliest CVE date: 10 Dec 1997, 05:00 UTC
Latest CVE date: 18 Nov 2024, 16:15 UTC
Latest CVE reference: CVE-2024-52574
30-day Count (Rolling): 0
365-day Count (Rolling): 102
Calendar-based Variation
Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.
Month Variation (Calendar): 0%
Year Variation (Calendar): -55.26%
Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): -55.26%
Average CVSS: 4.24
Max CVSS: 10.0
Critical CVEs (≥9): 93
Range | Count |
---|---|
0.0-3.9 | 609 |
4.0-6.9 | 843 |
7.0-8.9 | 244 |
9.0-10.0 | 93 |
These are the five CVEs with the highest CVSS scores for siemens, sorted by severity first and recency.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24543)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24521)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain a stack based overflow vulnerability while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24486)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24485)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24365)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24260)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain a use-after-free vulnerability that could be triggered while parsing specially crafted WRL files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-24244)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24237)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24233)
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Teamcenter Visualization V2406 (All versions < V2406.0005), Tecnomatix Plant Simulation V2302 (All versions < V2302.0018), Tecnomatix Plant Simulation V2404 (All versions < V2404.0007). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-24231)
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices do not properly sanitize an input field. This could allow an authenticated remote attacker with administrative privileges to inject code or spawn a system root shell.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices do not properly sanitize the filenames before uploading. This could allow an authenticated remote attacker to compromise of integrity of the system.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices truncates usernames longer than 15 characters when accessed via SSH or Telnet. This could allow an attacker to compromise system integrity.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2). Affected devices do not properly validate the filenames of the certificate. This could allow an authenticated remote attacker to append arbitrary values which will lead to compromise of integrity of the system.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2). Affected devices improperly manage access control for read-only users. This could allow an attacker to cause a temporary denial of service condition.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.2), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.2), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.2), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.2), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.2), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.2), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.2). Affected devices do not properly validate input in configuration fields of the iperf functionality. This could allow an unauthenticated remote attacker to execute arbitrary code on the device.
A vulnerability has been identified in SINEC NMS (All versions < V3.0 SP1). The affected application contains a database function, that does not properly restrict the permissions of users to write to the filesystem of the host system. This could allow an authenticated medium-privileged attacker to write arbitrary content to any location in the filesystem of the host system.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 3). The affected application does not properly invalidate sessions when the associated user is deleted or disabled or their permissions are modified. This could allow an authenticated attacker to continue performing malicious actions even after their user account has been disabled.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 3). The affected application does not properly validate input sent to specific endpoints of its web API. This could allow an authenticated remote attacker with high privileges on the application to execute arbitrary code on the underlying OS.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 3). The affected application uses hard-coded cryptographic key material to obfuscate configuration files. This could allow an attacker to learn that cryptographic key material through reverse engineering of the application binary and decrypt arbitrary backup files.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 3). The affected application does not properly sanitize user provided paths for SFTP-based file up- and downloads. This could allow an authenticated remote attacker to manipulate arbitrary files on the filesystem and achieve arbitrary code execution on the device.
A vulnerability has been identified in PP TeleControl Server Basic 1000 to 5000 V3.1 (6NH9910-0AA31-0AE1) (All versions < V3.1.2.1 with redundancy configured), PP TeleControl Server Basic 256 to 1000 V3.1 (6NH9910-0AA31-0AD1) (All versions < V3.1.2.1 with redundancy configured), PP TeleControl Server Basic 32 to 64 V3.1 (6NH9910-0AA31-0AF1) (All versions < V3.1.2.1 with redundancy configured), PP TeleControl Server Basic 64 to 256 V3.1 (6NH9910-0AA31-0AC1) (All versions < V3.1.2.1 with redundancy configured), PP TeleControl Server Basic 8 to 32 V3.1 (6NH9910-0AA31-0AB1) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic 1000 V3.1 (6NH9910-0AA31-0AD0) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic 256 V3.1 (6NH9910-0AA31-0AC0) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic 32 V3.1 (6NH9910-0AA31-0AF0) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic 5000 V3.1 (6NH9910-0AA31-0AE0) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic 64 V3.1 (6NH9910-0AA31-0AB0) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic 8 V3.1 (6NH9910-0AA31-0AA0) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic Serv Upgr (6NH9910-0AA31-0GA1) (All versions < V3.1.2.1 with redundancy configured), TeleControl Server Basic Upgr V3.1 (6NH9910-0AA31-0GA0) (All versions < V3.1.2.1 with redundancy configured). The affected system allows remote users to send maliciously crafted objects. Due to insecure deserialization of user-supplied content by the affected software, an unauthenticated attacker could exploit this vulnerability by sending a maliciously crafted serialized object. This could allow the attacker to execute arbitrary code on the device with SYSTEM privileges.
A vulnerability has been identified in OZW672 (All versions < V5.2), OZW772 (All versions < V5.2). The user accounts tab of affected devices is vulnerable to stored cross-site scripting (XSS) attacks. This could allow an authenticated remote attacker to inject arbitrary JavaScript code that is later executed by another authenticated victim user with potential higher privileges than the attacker.
A vulnerability has been identified in Spectrum Power 7 (All versions < V24Q3). The affected product contains several root-owned SUID binaries that could allow an authenticated local attacker to escalate privileges.
A vulnerability has been identified in ModelSim (All versions < V2024.3), Questa (All versions < V2024.3). vsimk.exe in affected applications allows a specific tcl file to be loaded from the current working directory. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges in installations where administrators or processes with elevated privileges launch vsimk.exe from a user-writable directory.
A vulnerability has been identified in ModelSim (All versions < V2024.3), Questa (All versions < V2024.3). gdb.exe in affected applications allows a specific executable file to be loaded from the current working directory. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges in installations where administrators or processes with elevated privileges launch gdb.exe from a user-writable directory.
A vulnerability has been identified in ModelSim (All versions < V2024.3), Questa (All versions < V2024.3). vish2.exe in affected applications allows a specific DLL file to be loaded from the current working directory. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges in installations where administrators or processes with elevated privileges launch vish2.exe from a user-writable directory.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted WRL files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. An attacker could leverage this in conjunction with other vulnerabilities to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. An attacker could leverage this in conjunction with other vulnerabilities to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. An attacker could leverage this in conjunction with other vulnerabilities to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. An attacker could leverage this in conjunction with other vulnerabilities to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds write vulnerability when parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Teamcenter Visualization V14.2 (All versions < V14.2.0.14), Teamcenter Visualization V14.3 (All versions < V14.3.0.12), Teamcenter Visualization V2312 (All versions < V2312.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0016), Tecnomatix Plant Simulation V2404 (All versions < V2404.0005). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V2406.0003). The affected application contains a stack-based buffer overflow vulnerability that could be triggered while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process.
Triangle Microworks TMW IEC 61850 Client source code libraries before 12.2.0 lack a buffer size check when processing received messages. The resulting buffer overflow can cause a crash, resulting in a denial of service.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP2). The affected application does not properly handle user session establishment and invalidation. This could allow a remote attacker to circumvent the additional multi factor authentication for user session establishment.
A vulnerability has been identified in SINEMA Remote Connect Client (All versions < V3.2 SP2). The affected application inserts sensitive information into a log file which is readable by all legitimate users of the underlying system. This could allow an authenticated attacker to compromise the confidentiality of other users' configuration data.
A vulnerability has been identified in SIMATIC Reader RF610R CMIIT (6GT2811-6BC10-2AA0) (All versions < V4.2), SIMATIC Reader RF610R ETSI (6GT2811-6BC10-0AA0) (All versions < V4.2), SIMATIC Reader RF610R FCC (6GT2811-6BC10-1AA0) (All versions < V4.2), SIMATIC Reader RF615R CMIIT (6GT2811-6CC10-2AA0) (All versions < V4.2), SIMATIC Reader RF615R ETSI (6GT2811-6CC10-0AA0) (All versions < V4.2), SIMATIC Reader RF615R FCC (6GT2811-6CC10-1AA0) (All versions < V4.2), SIMATIC Reader RF650R ARIB (6GT2811-6AB20-4AA0) (All versions < V4.2), SIMATIC Reader RF650R CMIIT (6GT2811-6AB20-2AA0) (All versions < V4.2), SIMATIC Reader RF650R ETSI (6GT2811-6AB20-0AA0) (All versions < V4.2), SIMATIC Reader RF650R FCC (6GT2811-6AB20-1AA0) (All versions < V4.2), SIMATIC Reader RF680R ARIB (6GT2811-6AA10-4AA0) (All versions < V4.2), SIMATIC Reader RF680R CMIIT (6GT2811-6AA10-2AA0) (All versions < V4.2), SIMATIC Reader RF680R ETSI (6GT2811-6AA10-0AA0) (All versions < V4.2), SIMATIC Reader RF680R FCC (6GT2811-6AA10-1AA0) (All versions < V4.2), SIMATIC Reader RF685R ARIB (6GT2811-6CA10-4AA0) (All versions < V4.2), SIMATIC Reader RF685R CMIIT (6GT2811-6CA10-2AA0) (All versions < V4.2), SIMATIC Reader RF685R ETSI (6GT2811-6CA10-0AA0) (All versions < V4.2), SIMATIC Reader RF685R FCC (6GT2811-6CA10-1AA0) (All versions < V4.2), SIMATIC RF1140R (6GT2831-6CB00) (All versions < V1.1), SIMATIC RF1170R (6GT2831-6BB00) (All versions < V1.1), SIMATIC RF166C (6GT2002-0EE20) (All versions < V2.2), SIMATIC RF185C (6GT2002-0JE10) (All versions < V2.2), SIMATIC RF186C (6GT2002-0JE20) (All versions < V2.2), SIMATIC RF186CI (6GT2002-0JE50) (All versions < V2.2), SIMATIC RF188C (6GT2002-0JE40) (All versions < V2.2), SIMATIC RF188CI (6GT2002-0JE60) (All versions < V2.2), SIMATIC RF360R (6GT2801-5BA30) (All versions < V2.2). The affected application improperly handles error while a faulty certificate upload leading to crashing of application. This vulnerability could allow an attacker to disclose sensitive information.
A vulnerability has been identified in SIMATIC Reader RF610R CMIIT (6GT2811-6BC10-2AA0) (All versions < V4.2), SIMATIC Reader RF610R ETSI (6GT2811-6BC10-0AA0) (All versions < V4.2), SIMATIC Reader RF610R FCC (6GT2811-6BC10-1AA0) (All versions < V4.2), SIMATIC Reader RF615R CMIIT (6GT2811-6CC10-2AA0) (All versions < V4.2), SIMATIC Reader RF615R ETSI (6GT2811-6CC10-0AA0) (All versions < V4.2), SIMATIC Reader RF615R FCC (6GT2811-6CC10-1AA0) (All versions < V4.2), SIMATIC Reader RF650R ARIB (6GT2811-6AB20-4AA0) (All versions < V4.2), SIMATIC Reader RF650R CMIIT (6GT2811-6AB20-2AA0) (All versions < V4.2), SIMATIC Reader RF650R ETSI (6GT2811-6AB20-0AA0) (All versions < V4.2), SIMATIC Reader RF650R FCC (6GT2811-6AB20-1AA0) (All versions < V4.2), SIMATIC Reader RF680R ARIB (6GT2811-6AA10-4AA0) (All versions < V4.2), SIMATIC Reader RF680R CMIIT (6GT2811-6AA10-2AA0) (All versions < V4.2), SIMATIC Reader RF680R ETSI (6GT2811-6AA10-0AA0) (All versions < V4.2), SIMATIC Reader RF680R FCC (6GT2811-6AA10-1AA0) (All versions < V4.2), SIMATIC Reader RF685R ARIB (6GT2811-6CA10-4AA0) (All versions < V4.2), SIMATIC Reader RF685R CMIIT (6GT2811-6CA10-2AA0) (All versions < V4.2), SIMATIC Reader RF685R ETSI (6GT2811-6CA10-0AA0) (All versions < V4.2), SIMATIC Reader RF685R FCC (6GT2811-6CA10-1AA0) (All versions < V4.2), SIMATIC RF1140R (6GT2831-6CB00) (All versions < V1.1), SIMATIC RF1170R (6GT2831-6BB00) (All versions < V1.1), SIMATIC RF166C (6GT2002-0EE20) (All versions < V2.2), SIMATIC RF185C (6GT2002-0JE10) (All versions < V2.2), SIMATIC RF186C (6GT2002-0JE20) (All versions < V2.2), SIMATIC RF186CI (6GT2002-0JE50) (All versions < V2.2), SIMATIC RF188C (6GT2002-0JE40) (All versions < V2.2), SIMATIC RF188CI (6GT2002-0JE60) (All versions < V2.2), SIMATIC RF360R (6GT2801-5BA30) (All versions < V2.2). The affected application contains a hidden configuration item to enable debug functionality. This could allow an attacker to gain insight into the internal configuration of the deployment.
A vulnerability has been identified in SIMATIC Reader RF610R CMIIT (6GT2811-6BC10-2AA0) (All versions < V4.2), SIMATIC Reader RF610R ETSI (6GT2811-6BC10-0AA0) (All versions < V4.2), SIMATIC Reader RF610R FCC (6GT2811-6BC10-1AA0) (All versions < V4.2), SIMATIC Reader RF615R CMIIT (6GT2811-6CC10-2AA0) (All versions < V4.2), SIMATIC Reader RF615R ETSI (6GT2811-6CC10-0AA0) (All versions < V4.2), SIMATIC Reader RF615R FCC (6GT2811-6CC10-1AA0) (All versions < V4.2), SIMATIC Reader RF650R ARIB (6GT2811-6AB20-4AA0) (All versions < V4.2), SIMATIC Reader RF650R CMIIT (6GT2811-6AB20-2AA0) (All versions < V4.2), SIMATIC Reader RF650R ETSI (6GT2811-6AB20-0AA0) (All versions < V4.2), SIMATIC Reader RF650R FCC (6GT2811-6AB20-1AA0) (All versions < V4.2), SIMATIC Reader RF680R ARIB (6GT2811-6AA10-4AA0) (All versions < V4.2), SIMATIC Reader RF680R CMIIT (6GT2811-6AA10-2AA0) (All versions < V4.2), SIMATIC Reader RF680R ETSI (6GT2811-6AA10-0AA0) (All versions < V4.2), SIMATIC Reader RF680R FCC (6GT2811-6AA10-1AA0) (All versions < V4.2), SIMATIC Reader RF685R ARIB (6GT2811-6CA10-4AA0) (All versions < V4.2), SIMATIC Reader RF685R CMIIT (6GT2811-6CA10-2AA0) (All versions < V4.2), SIMATIC Reader RF685R ETSI (6GT2811-6CA10-0AA0) (All versions < V4.2), SIMATIC Reader RF685R FCC (6GT2811-6CA10-1AA0) (All versions < V4.2), SIMATIC RF1140R (6GT2831-6CB00) (All versions < V1.1), SIMATIC RF1170R (6GT2831-6BB00) (All versions < V1.1), SIMATIC RF166C (6GT2002-0EE20) (All versions < V2.2), SIMATIC RF185C (6GT2002-0JE10) (All versions < V2.2), SIMATIC RF186C (6GT2002-0JE20) (All versions < V2.2), SIMATIC RF186CI (6GT2002-0JE50) (All versions < V2.2), SIMATIC RF188C (6GT2002-0JE40) (All versions < V2.2), SIMATIC RF188CI (6GT2002-0JE60) (All versions < V2.2), SIMATIC RF360R (6GT2801-5BA30) (All versions < V2.2). The affected applications do not authenticated the creation of Ajax2App instances. This could allow an unauthenticated attacker to cause a denial of service condition.
A vulnerability has been identified in SIMATIC Reader RF610R CMIIT (6GT2811-6BC10-2AA0) (All versions < V4.2), SIMATIC Reader RF610R ETSI (6GT2811-6BC10-0AA0) (All versions < V4.2), SIMATIC Reader RF610R FCC (6GT2811-6BC10-1AA0) (All versions < V4.2), SIMATIC Reader RF615R CMIIT (6GT2811-6CC10-2AA0) (All versions < V4.2), SIMATIC Reader RF615R ETSI (6GT2811-6CC10-0AA0) (All versions < V4.2), SIMATIC Reader RF615R FCC (6GT2811-6CC10-1AA0) (All versions < V4.2), SIMATIC Reader RF650R ARIB (6GT2811-6AB20-4AA0) (All versions < V4.2), SIMATIC Reader RF650R CMIIT (6GT2811-6AB20-2AA0) (All versions < V4.2), SIMATIC Reader RF650R ETSI (6GT2811-6AB20-0AA0) (All versions < V4.2), SIMATIC Reader RF650R FCC (6GT2811-6AB20-1AA0) (All versions < V4.2), SIMATIC Reader RF680R ARIB (6GT2811-6AA10-4AA0) (All versions < V4.2), SIMATIC Reader RF680R CMIIT (6GT2811-6AA10-2AA0) (All versions < V4.2), SIMATIC Reader RF680R ETSI (6GT2811-6AA10-0AA0) (All versions < V4.2), SIMATIC Reader RF680R FCC (6GT2811-6AA10-1AA0) (All versions < V4.2), SIMATIC Reader RF685R ARIB (6GT2811-6CA10-4AA0) (All versions < V4.2), SIMATIC Reader RF685R CMIIT (6GT2811-6CA10-2AA0) (All versions < V4.2), SIMATIC Reader RF685R ETSI (6GT2811-6CA10-0AA0) (All versions < V4.2), SIMATIC Reader RF685R FCC (6GT2811-6CA10-1AA0) (All versions < V4.2), SIMATIC RF1140R (6GT2831-6CB00) (All versions < V1.1), SIMATIC RF1170R (6GT2831-6BB00) (All versions < V1.1), SIMATIC RF166C (6GT2002-0EE20) (All versions < V2.2), SIMATIC RF185C (6GT2002-0JE10) (All versions < V2.2), SIMATIC RF186C (6GT2002-0JE20) (All versions < V2.2), SIMATIC RF186CI (6GT2002-0JE50) (All versions < V2.2), SIMATIC RF188C (6GT2002-0JE40) (All versions < V2.2), SIMATIC RF188CI (6GT2002-0JE60) (All versions < V2.2), SIMATIC RF360R (6GT2801-5BA30) (All versions < V2.2). The affected devices does not properly handle the error in case of exceeding characters while setting SNMP leading to the restart of the application.
A vulnerability has been identified in SIMATIC Reader RF610R CMIIT (6GT2811-6BC10-2AA0) (All versions < V4.2), SIMATIC Reader RF610R ETSI (6GT2811-6BC10-0AA0) (All versions < V4.2), SIMATIC Reader RF610R FCC (6GT2811-6BC10-1AA0) (All versions < V4.2), SIMATIC Reader RF615R CMIIT (6GT2811-6CC10-2AA0) (All versions < V4.2), SIMATIC Reader RF615R ETSI (6GT2811-6CC10-0AA0) (All versions < V4.2), SIMATIC Reader RF615R FCC (6GT2811-6CC10-1AA0) (All versions < V4.2), SIMATIC Reader RF650R ARIB (6GT2811-6AB20-4AA0) (All versions < V4.2), SIMATIC Reader RF650R CMIIT (6GT2811-6AB20-2AA0) (All versions < V4.2), SIMATIC Reader RF650R ETSI (6GT2811-6AB20-0AA0) (All versions < V4.2), SIMATIC Reader RF650R FCC (6GT2811-6AB20-1AA0) (All versions < V4.2), SIMATIC Reader RF680R ARIB (6GT2811-6AA10-4AA0) (All versions < V4.2), SIMATIC Reader RF680R CMIIT (6GT2811-6AA10-2AA0) (All versions < V4.2), SIMATIC Reader RF680R ETSI (6GT2811-6AA10-0AA0) (All versions < V4.2), SIMATIC Reader RF680R FCC (6GT2811-6AA10-1AA0) (All versions < V4.2), SIMATIC Reader RF685R ARIB (6GT2811-6CA10-4AA0) (All versions < V4.2), SIMATIC Reader RF685R CMIIT (6GT2811-6CA10-2AA0) (All versions < V4.2), SIMATIC Reader RF685R ETSI (6GT2811-6CA10-0AA0) (All versions < V4.2), SIMATIC Reader RF685R FCC (6GT2811-6CA10-1AA0) (All versions < V4.2), SIMATIC RF1140R (6GT2831-6CB00) (All versions < V1.1), SIMATIC RF1170R (6GT2831-6BB00) (All versions < V1.1), SIMATIC RF166C (6GT2002-0EE20) (All versions < V2.2), SIMATIC RF185C (6GT2002-0JE10) (All versions < V2.2), SIMATIC RF186C (6GT2002-0JE20) (All versions < V2.2), SIMATIC RF186CI (6GT2002-0JE50) (All versions < V2.2), SIMATIC RF188C (6GT2002-0JE40) (All versions < V2.2), SIMATIC RF188CI (6GT2002-0JE60) (All versions < V2.2), SIMATIC RF360R (6GT2801-5BA30) (All versions < V2.2). The service log files of the affected application can be accessed without proper authentication. This could allow an unauthenticated attacker to get access to sensitive information.
A vulnerability has been identified in SIMATIC Reader RF610R CMIIT (6GT2811-6BC10-2AA0) (All versions < V4.2), SIMATIC Reader RF610R ETSI (6GT2811-6BC10-0AA0) (All versions < V4.2), SIMATIC Reader RF610R FCC (6GT2811-6BC10-1AA0) (All versions < V4.2), SIMATIC Reader RF615R CMIIT (6GT2811-6CC10-2AA0) (All versions < V4.2), SIMATIC Reader RF615R ETSI (6GT2811-6CC10-0AA0) (All versions < V4.2), SIMATIC Reader RF615R FCC (6GT2811-6CC10-1AA0) (All versions < V4.2), SIMATIC Reader RF650R ARIB (6GT2811-6AB20-4AA0) (All versions < V4.2), SIMATIC Reader RF650R CMIIT (6GT2811-6AB20-2AA0) (All versions < V4.2), SIMATIC Reader RF650R ETSI (6GT2811-6AB20-0AA0) (All versions < V4.2), SIMATIC Reader RF650R FCC (6GT2811-6AB20-1AA0) (All versions < V4.2), SIMATIC Reader RF680R ARIB (6GT2811-6AA10-4AA0) (All versions < V4.2), SIMATIC Reader RF680R CMIIT (6GT2811-6AA10-2AA0) (All versions < V4.2), SIMATIC Reader RF680R ETSI (6GT2811-6AA10-0AA0) (All versions < V4.2), SIMATIC Reader RF680R FCC (6GT2811-6AA10-1AA0) (All versions < V4.2), SIMATIC Reader RF685R ARIB (6GT2811-6CA10-4AA0) (All versions < V4.2), SIMATIC Reader RF685R CMIIT (6GT2811-6CA10-2AA0) (All versions < V4.2), SIMATIC Reader RF685R ETSI (6GT2811-6CA10-0AA0) (All versions < V4.2), SIMATIC Reader RF685R FCC (6GT2811-6CA10-1AA0) (All versions < V4.2), SIMATIC RF1140R (6GT2831-6CB00) (All versions < V1.1), SIMATIC RF1170R (6GT2831-6BB00) (All versions < V1.1), SIMATIC RF166C (6GT2002-0EE20) (All versions < V2.2), SIMATIC RF185C (6GT2002-0JE10) (All versions < V2.2), SIMATIC RF186C (6GT2002-0JE20) (All versions < V2.2), SIMATIC RF186CI (6GT2002-0JE50) (All versions < V2.2), SIMATIC RF188C (6GT2002-0JE40) (All versions < V2.2), SIMATIC RF188CI (6GT2002-0JE60) (All versions < V2.2), SIMATIC RF360R (6GT2801-5BA30) (All versions < V2.2). The affected applications contain configuration files which can be modified. An attacker with privilege access can modify these files and enable features that are not released for this device.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.1), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.1), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.1), SCALANCE M812-1 ADSL-Router family (All versions < V8.1), SCALANCE M816-1 ADSL-Router family (All versions < V8.1), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.1), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.1), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.1), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.1), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.1), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.1), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.1), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.1), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.1), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.1), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.1), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.1), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.1), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.1), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.1), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.1), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.1), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.1), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.1). Affected devices insert sensitive information about the generation of 2FA tokens into log files. This could allow an authenticated remote attacker to forge 2FA tokens of other users.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.1), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.1), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.1), SCALANCE M812-1 ADSL-Router family (All versions < V8.1), SCALANCE M816-1 ADSL-Router family (All versions < V8.1), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.1), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.1), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.1), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.1), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.1), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.1), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.1), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.1), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.1), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.1), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.1), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.1), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.1), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.1), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.1), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.1), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.1), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.1), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.1). Affected devices do not properly enforce isolation between user sessions in their web server component. This could allow an authenticated remote attacker to escalate their privileges on the devices.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.1), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.1), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.1), SCALANCE M812-1 ADSL-Router family (All versions < V8.1), SCALANCE M816-1 ADSL-Router family (All versions < V8.1), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.1), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.1), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.1), SCALANCE M874-3 3G-Router (CN) (6GK5874-3AA00-2FA2) (All versions < V8.1), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.1), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.1), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.1), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.1), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.1), SCALANCE MUM853-1 (A1) (6GK5853-2EA10-2AA1) (All versions < V8.1), SCALANCE MUM853-1 (B1) (6GK5853-2EA10-2BA1) (All versions < V8.1), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.1), SCALANCE MUM856-1 (A1) (6GK5856-2EA10-3AA1) (All versions < V8.1), SCALANCE MUM856-1 (B1) (6GK5856-2EA10-3BA1) (All versions < V8.1), SCALANCE MUM856-1 (CN) (6GK5856-2EA00-3FA1) (All versions < V8.1), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.1), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.1), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.1), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.1). Affected devices do not properly validate input in specific VPN configuration fields. This could allow an authenticated remote attacker to execute arbitrary code on the device.
A vulnerability has been identified in SINEC NMS (All versions < V3.0). The affected application does not properly enforce authorization checks. This could allow an authenticated attacker to bypass the checks and modify settings in the application without authorization.
A vulnerability has been identified in SINEC NMS (All versions < V3.0). The affected application does not properly validate user input to a privileged command queue. This could allow an authenticated attacker to execute OS commands with elevated privileges.
A vulnerability has been identified in SINEC NMS (All versions < V3.0). The affected application does not properly enforce authorization checks. This could allow an authenticated attacker to bypass the checks and elevate their privileges on the application.
A vulnerability has been identified in SINEC NMS (All versions < V3.0). The importCertificate function of the SINEC NMS Control web application contains a path traversal vulnerability. This could allow an authenticated attacker it to delete arbitrary certificate files on the drive SINEC NMS is installed on.
A vulnerability has been identified in SINEC NMS (All versions < V3.0). The affected application executes a subset of its services as `NT AUTHORITY\SYSTEM`. This could allow a local attacker to execute operating system commands with elevated privileges.
A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions). The affected system exposes the port of an internal application on the public network interface allowing an attacker to circumvent authentication and directly access the exposed application.
A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions). Affected devices allow authenticated users to export diagnostics data. The corresponding API endpoint is susceptible to path traversal and could allow an authenticated attacker to download arbitrary files from the file system.
A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 Domain Controller R9.2 (All versions), Omnivise T3000 Network Intrusion Detection System (NIDS) R9.2 (All versions), Omnivise T3000 Product Data Management (PDM) R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions), Omnivise T3000 Security Server R9.2 (All versions), Omnivise T3000 Terminal Server R9.2 (All versions), Omnivise T3000 Thin Client R9.2 (All versions), Omnivise T3000 Whitelisting Server R9.2 (All versions). The affected devices stores initial system credentials without sufficient protection. An attacker with remote shell access or physical access could retrieve the credentials leading to confidentiality loss allowing the attacker to laterally move within the affected network.
A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 Domain Controller R9.2 (All versions), Omnivise T3000 Product Data Management (PDM) R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions), Omnivise T3000 Terminal Server R9.2 (All versions), Omnivise T3000 Thin Client R9.2 (All versions), Omnivise T3000 Whitelisting Server R9.2 (All versions). The affected application regularly executes user modifiable code as a privileged user. This could allow a local authenticated attacker to execute arbitrary code with elevated privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). Affected applications do not properly handle log rotation. This could allow an unauthenticated remote attacker to cause a denial of service condition through resource exhaustion on the device.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application allows authenticated, low privilege users with the 'Manage own remote connections' permission to retrieve details about other users and group memberships.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application does not properly implement brute force protection against user credentials in its Client Communication component. This could allow an attacker to learn user credentials that are vulnerable to brute force attacks.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application does not properly implement brute force protection against user credentials in its web API. This could allow an attacker to learn user credentials that are vulnerable to brute force attacks.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application does not properly assign rights to temporary files created during its update process. This could allow an authenticated attacker with the 'Manage firmware updates' role to escalate their privileges on the underlying OS level.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). Affected applications do not properly separate the rights to edit device settings and to edit settings for communication relations. This could allow an authenticated attacker with the permission to manage devices to gain access to participant groups that the attacked does not belong to.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected applications can be configured to allow users to manage own users. A local authenticated user with this privilege could use this modify users outside of their own scope as well as to escalate privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). Affected products allow to upload certificates. An authenticated attacker could upload a crafted certificates leading to a permanent denial-of-service situation. In order to recover from such an attack, the offending certificate needs to be removed manually.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). Affected devices do not properly validate the authentication when performing certain actions in the web interface allowing an unauthenticated attacker to access and edit VxLAN configuration information of networks for which they have no privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). Affected devices do not properly validate the authentication when performing certain actions in the web interface allowing an unauthenticated attacker to access and edit device configuration information of devices for which they have no privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application allows users to upload encrypted backup files. This could allow an attacker with access to the backup encryption key and with the right to upload backup files to create a user with administrative privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application allows users to upload encrypted backup files. As part of this backup, files can be restored without correctly checking the path of the restored file. This could allow an attacker with access to the backup encryption key to upload malicious files, that could potentially lead to remote code execution.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 HF1). Affected applications are vulnerable to command injection due to missing server side input sanitation when loading SNMP configurations. This could allow an attacker with the right to modify the SNMP configuration to execute arbitrary code with root privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 HF1). Affected applications are vulnerable to command injection due to missing server side input sanitation when loading VxLAN configurations. This could allow an authenticated attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in SINEMA Remote Connect Client (All versions < V3.2 HF1). The system service of affected applications is vulnerable to command injection due to missing server side input sanitation when loading VPN configurations. This could allow an administrative remote attacker running a corresponding SINEMA Remote Connect Server to execute arbitrary code with system privileges on the client system.
A vulnerability has been identified in SINEMA Remote Connect Client (All versions < V3.2 HF1). The system service of affected applications is vulnerable to command injection due to missing server side input sanitation when loading proxy configurations. This could allow an authenticated local attacker to execute arbitrary code with system privileges.
A vulnerability has been identified in Simcenter Femap (All versions < V2406). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted BMP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Simcenter Femap (All versions < V2406). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted BMP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Simcenter Femap (All versions < V2406). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted IGS part file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Medicalis Workflow Orchestrator (All versions). The affected application executes as a trusted account with high privileges and network access. This could allow an authenticated local attacker to escalate privileges.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected application lacks input validation due to which an attacker can gain access to the Database entries.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected web server, after a successful login, sets the session cookie on the browser, without applying any security attributes (such as “Secure”, “HttpOnly”, or “SameSite”).
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected web server is not enforcing HSTS. This could allow an attacker to perform downgrade attacks exposing confidential information.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected web server is allowing HTTP methods like PUT and Delete. This could allow an attacker to modify unauthorized files.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected web server stored the password in cleartext. This could allow attacker in a privileged position to obtain access passwords.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The web interface of the affected devices are vulnerable to Cross-Site Request Forgery(CSRF) attacks. By tricking an authenticated victim user to click a malicious link, an attacker could perform arbitrary actions on the device on behalf of the victim user.
A vulnerability has been identified in SINEC Traffic Analyzer (6GK8822-1BG01-0BA0) (All versions < V1.2). The affected application does not expire the session. This could allow an attacker to get unauthorized access.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected systems could allow log messages to be forwarded to a specific client under certain circumstances. An attacker could leverage this vulnerability to forward log messages to a specific compromised client.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). Downloading files overwrites files with the same name in the installation directory of the affected systems. The filename for the target file can be specified, thus arbitrary files can be overwritten by an attacker with the required privileges.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The bulk import feature of the affected systems allow a privileged user to upload files to the root installation directory of the system. By replacing specific files, an attacker could tamper specific files or even achieve remote code execution.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected systems allow a privileged user to upload firmware files to the root installation directory of the system. By replacing specific files, an attacker could tamper specific files or even achieve remote code execution.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected systems allow a privileged user to upload generic files to the root installation directory of the system. By replacing specific files, an attacker could tamper specific files or even achieve remote code execution.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected systems allow any unauthenticated client to disconnect any active user from the server. An attacker could use this vulnerability to prevent any user to perform actions in the system, causing a denial of service situation.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected client systems do not properly sanitize input data before sending it to the SQL server. An attacker could use this vulnerability to compromise the whole database.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected systems allow any authenticated user to send arbitrary SQL commands to the SQL server. An attacker could use this vulnerability to compromise the whole database.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). The affected systems allow the upload of arbitrary files of any unauthenticated user. An attacker could leverage this vulnerability and achieve arbitrary code execution with system privileges.
A vulnerability has been identified in SINEMA Remote Connect Client (All versions < V3.1 SP1). The product places sensitive information into files or directories that are accessible to actors who are allowed to have access to the files, but not to the sensitive information. This information is also available via the web interface of the product.
A vulnerability has been identified in Cerberus PRO EN Engineering Tool (All versions < IP8), Cerberus PRO EN Fire Panel FC72x IP6 (All versions < IP6 SR3), Cerberus PRO EN Fire Panel FC72x IP7 (All versions < IP7 SR5), Cerberus PRO EN X200 Cloud Distribution IP7 (All versions < V3.0.6602), Cerberus PRO EN X200 Cloud Distribution IP8 (All versions < V4.0.5016), Cerberus PRO EN X300 Cloud Distribution IP7 (All versions < V3.2.6601), Cerberus PRO EN X300 Cloud Distribution IP8 (All versions < V4.2.5015), Cerberus PRO UL Compact Panel FC922/924 (All versions < MP4), Cerberus PRO UL Engineering Tool (All versions < MP4), Cerberus PRO UL X300 Cloud Distribution (All versions < V4.3.0001), Desigo Fire Safety UL Compact Panel FC2025/2050 (All versions < MP4), Desigo Fire Safety UL Engineering Tool (All versions < MP4), Desigo Fire Safety UL X300 Cloud Distribution (All versions < V4.3.0001), Sinteso FS20 EN Engineering Tool (All versions < MP8), Sinteso FS20 EN Fire Panel FC20 MP6 (All versions < MP6 SR3), Sinteso FS20 EN Fire Panel FC20 MP7 (All versions < MP7 SR5), Sinteso FS20 EN X200 Cloud Distribution MP7 (All versions < V3.0.6602), Sinteso FS20 EN X200 Cloud Distribution MP8 (All versions < V4.0.5016), Sinteso FS20 EN X300 Cloud Distribution MP7 (All versions < V3.2.6601), Sinteso FS20 EN X300 Cloud Distribution MP8 (All versions < V4.2.5015), Sinteso Mobile (All versions < V3.0.0). The network communication library in affected systems does not validate the length of certain X.509 certificate attributes which might result in a stack-based buffer overflow. This could allow an unauthenticated remote attacker to execute code on the underlying operating system with root privileges.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2). The affected application consists of a web service that lacks proper access control for some of the endpoints. This could lead to unauthorized access to resources and potentially lead to code execution.
A vulnerability has been identified in Simcenter Femap (All versions < V2306.0000). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted Catia MODEL files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-22060)
A vulnerability has been identified in Simcenter Femap (All versions < V2306.0000). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted Catia MODEL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-22059)
A vulnerability has been identified in Simcenter Femap (All versions < V2401.0000), Simcenter Femap (All versions < V2306.0001). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted Catia MODEL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-22055)
A vulnerability has been identified in Simcenter Femap (All versions < V2401.0000). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted Catia MODEL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21715)
A vulnerability has been identified in Simcenter Femap (All versions < V2401.0000). The affected application is vulnerable to memory corruption while parsing specially crafted Catia MODEL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21712)
A vulnerability has been identified in Simcenter Femap (All versions < V2401.0000). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted Catia MODEL file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21710)
A vulnerability has been identified in Polarion ALM (All versions < V2404.0). The REST API endpoints of doorsconnector of the affected product lacks proper authentication. An unauthenticated attacker could access the endpoints, and potentially execute code.
A vulnerability has been identified in SINEC NMS (All versions < V2.0 SP1). The affected application incorrectly neutralizes special elements when creating a report which could lead to command injection.
A vulnerability has been identified in SINEC NMS (All versions < V2.0 SP1). The affected application allows users to upload arbitrary files via TFTP. This could allow an attacker to upload malicious firmware images or other files, that could potentially lead to remote code execution.
A vulnerability has been identified in SINEC NMS (All versions < V2.0 SP1). The affected application is vulnerable to SQL injection. This could allow an unauthenticated remote attacker to execute arbitrary SQL queries on the server database.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0012), Tecnomatix Plant Simulation V2302 (All versions < V2302.0006). The affected applications contain a stack overflow vulnerability while parsing specially crafted PSOBJ files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions), Tecnomatix Plant Simulation V2302 (All versions < V2302.0007). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0012), Tecnomatix Plant Simulation V2302 (All versions < V2302.0006). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions), Tecnomatix Plant Simulation V2302 (All versions < V2302.0007). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted SPP files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions), Tecnomatix Plant Simulation V2302 (All versions < V2302.0007). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted SPP files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions), Tecnomatix Plant Simulation V2302 (All versions < V2302.0007). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted SPP files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0012), Tecnomatix Plant Simulation V2302 (All versions < V2302.0006). The affected applications contain a stack overflow vulnerability while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0012), Tecnomatix Plant Simulation V2302 (All versions < V2302.0006). The affected applications contain a stack overflow vulnerability while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0012), Tecnomatix Plant Simulation V2302 (All versions < V2302.0006). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0012), Tecnomatix Plant Simulation V2302 (All versions < V2302.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted WRL file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V35.0 (All versions < V35.0.251), Parasolid V35.1 (All versions < V35.1.170). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted XT files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in Unicam FX (All versions). The windows installer agent used in affected product contains incorrect use of privileged APIs that trigger the Windows Console Host (conhost.exe) as a child process with SYSTEM privileges. This could be exploited by an attacker to perform a local privilege escalation attack.
A vulnerability has been identified in SIMATIC CP 343-1 (6GK7343-1EX30-0XE0) (All versions), SIMATIC CP 343-1 Lean (6GK7343-1CX10-0XE0) (All versions), SIPLUS NET CP 343-1 (6AG1343-1EX30-7XE0) (All versions), SIPLUS NET CP 343-1 Lean (6AG1343-1CX10-2XE0) (All versions). Affected products incorrectly validate TCP sequence numbers. This could allow an unauthenticated remote attacker to create a denial of service condition by injecting spoofed TCP RST packets.
A vulnerability has been identified in Polarion ALM (All versions < V2404.0). The affected product is vulnerable due to weak file and folder permissions in the installation path. An attacker with local access could exploit this vulnerability to escalate privileges to NT AUTHORITY\SYSTEM.
A vulnerability has been identified in Parasolid V35.0 (All versions < V35.0.263), Parasolid V35.1 (All versions < V35.1.252), Parasolid V36.0 (All versions < V36.0.198), Solid Edge SE2023 (All versions < V223.0 Update 11), Solid Edge SE2024 (All versions < V224.0 Update 3). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted files containing XT format. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in OpenPCS 7 V9.1 (All versions < V9.1 SP2 UC05), SIMATIC BATCH V9.1 (All versions < V9.1 SP2 UC05), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP2 UC05), SIMATIC Route Control V9.1 (All versions < V9.1 SP2 UC05), SIMATIC WinCC Runtime Professional V18 (All versions < V18 Update 4), SIMATIC WinCC Runtime Professional V19 (All versions < V19 Update 2), SIMATIC WinCC V7.4 (All versions), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 15), SIMATIC WinCC V8.0 (All versions < V8.0 Update 4). The implementation of the RPC (Remote Procedure call) communication protocol in the affected products do not properly handle certain malformed RPC messages. An attacker could use this vulnerability to cause a denial of service condition in the RPC server.
A vulnerability has been identified in OpenPCS 7 V9.1 (All versions < V9.1 SP2 UC05), SIMATIC BATCH V9.1 (All versions < V9.1 SP2 UC05), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP2 UC05), SIMATIC Route Control V9.1 (All versions < V9.1 SP2 UC05), SIMATIC WinCC Runtime Professional V18 (All versions < V18 Update 4), SIMATIC WinCC Runtime Professional V19 (All versions < V19 Update 2), SIMATIC WinCC V7.4 (All versions), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 15), SIMATIC WinCC V8.0 (All versions < V8.0 Update 4). The implementation of the RPC (Remote Procedure call) communication protocol in the affected products do not properly handle certain unorganized RPC messages. An attacker could use this vulnerability to cause a denial of service condition in the RPC server.
A vulnerability has been identified in JT2Go (All versions < V14.3.0.6), Teamcenter Visualization V13.3 (All versions < V13.3.0.13), Teamcenter Visualization V14.1 (All versions < V14.1.0.12), Teamcenter Visualization V14.2 (All versions < V14.2.0.9), Teamcenter Visualization V14.3 (All versions < V14.3.0.6). The affected applications contain a stack overflow vulnerability while parsing specially crafted CGM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.3.0.6), Teamcenter Visualization V13.3 (All versions < V13.3.0.13), Teamcenter Visualization V14.1 (All versions < V14.1.0.12), Teamcenter Visualization V14.2 (All versions < V14.2.0.9), Teamcenter Visualization V14.3 (All versions < V14.3.0.6). The affected applications contain a stack overflow vulnerability while parsing specially crafted CGM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.3.0.6), Teamcenter Visualization V13.3 (All versions < V13.3.0.13), Teamcenter Visualization V14.1 (All versions < V14.1.0.12), Teamcenter Visualization V14.2 (All versions < V14.2.0.9), Teamcenter Visualization V14.3 (All versions < V14.3.0.6). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V14.3.0.6), Teamcenter Visualization V13.3 (All versions < V13.3.0.13), Teamcenter Visualization V14.1 (All versions < V14.1.0.12), Teamcenter Visualization V14.2 (All versions < V14.2.0.9), Teamcenter Visualization V14.3 (All versions < V14.3.0.6). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted CGM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in SIMATIC CN 4100 (All versions < V2.7). The "intermediate installation" system state of the affected application uses default credential with admin privileges. An attacker could use the credentials to gain complete control of the affected device.
A vulnerability has been identified in SIMATIC CN 4100 (All versions < V2.7). The affected application allows IP configuration change without authentication to the device. This could allow an attacker to cause denial of service condition.
A vulnerability has been identified in SIMATIC CN 4100 (All versions < V2.7). The "intermediate installation" system state of the affected application allows an attacker to add their own login credentials to the device. This allows an attacker to remotely login as root and take control of the device even after the affected device is fully set up.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected applications contain a stack overflow vulnerability while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted PAR file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 10). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Spectrum Power 7 (All versions < V23Q4). The affected product's sudo configuration permits the local administrative account to execute several entries as root user. This could allow an authenticated local attacker to inject arbitrary code and gain root access.
A vulnerability has been identified in CP-8031 MASTER MODULE (All versions < CPCI85 V05.20), CP-8050 MASTER MODULE (All versions < CPCI85 V05.20). The network configuration service of affected devices contains a flaw in the conversion of ipv4 addresses that could lead to an uninitialized variable being used in succeeding validation steps. By uploading specially crafted network configuration, an authenticated remote attacker could be able to inject commands that are executed on the device with root privileges during device startup.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V7.2.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V7.2.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V7.2.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V7.2.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V7.2.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V7.2.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V7.2.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V7.2.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V7.2.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V7.2.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V7.2.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V7.2.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V7.2.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V7.2.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V7.2.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V7.2.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V7.2.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V7.2.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V7.2.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V7.2.2). An Improper Neutralization of Special Elements used in an OS Command with root privileges vulnerability exists in the parsing of the IPSEC configuration. This could allow malicious local administrators to issue commands on system level after a new connection is established.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.0), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.0), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.0), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.0), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.0), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.0), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.0), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.0), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.0), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.0), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.0), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.0), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.0), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.0), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.0), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.0). An Improper Neutralization of Special Elements used in an OS Command with root privileges vulnerability exists in the handling of the DDNS configuration. This could allow malicious local administrators to issue commands on system level after a successful IP address update.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 2). Affected software does not correctly validate the response received by an UMC server. An attacker can use this to crash the affected software by providing and configuring a malicious UMC server or by manipulating the traffic from a legitimate UMC server (i.e. leveraging CVE-2023-48427).
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 2). The REST API of affected devices does not check the length of parameters in certain conditions. This allows a malicious admin to crash the server by sending a crafted request to the API. The server will automatically restart.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 2). The Web UI of affected devices does not check the length of parameters in certain conditions. This allows a malicious admin to crash the server by sending a crafted request to the server. The server will automatically restart.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 2). The radius configuration mechanism of affected products does not correctly check uploaded certificates. A malicious admin could upload a crafted certificate resulting in a denial-of-service condition or potentially issue commands on system level.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 2). Affected products do not properly validate the certificate of the configured UMC server. This could allow an attacker to intercept credentials that are sent to the UMC server as well as to manipulate responses, potentially allowing an attacker to escalate privileges.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). The affected application contains an improper input validation vulnerability that could allow an attacker to bring the service into a Denial-of-Service state by sending a specifically crafted message to 4004/tcp. The corresponding service is auto-restarted after the crash is detected by a watchdog.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). The affected application contains an out of bounds write past the end of an allocated buffer when handling specific requests on port 4002/tcp and 4004/tcp. This could allow an attacker to crash the application. The corresponding service is auto-restarted after the crash.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). The affected application contains an out of bounds write past the end of an allocated buffer when handling specific requests on port 4002/tcp. This could allow an attacker to crash the application. The corresponding service is auto-restarted after the crash.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected applications that could allow an attacker to inject arbitrary JavaScript code. The code could be potentially executed later by another (possibly privileged) user.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). When accessing the UMC Web-UI from affected products, UMC uses an overly permissive CORS policy. This could allow an attacker to trick a legitimate user to trigger unwanted behavior.
Affected devices improperly handle specially crafted packets sent to port 102/tcp. This could allow an attacker to create a denial of service condition. A restart is needed to restore normal operations.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 DNP3 (incl. SIPLUS variants) (All versions), SIMATIC CP 1243-1 IEC (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE (All versions < V3.4.29), SIMATIC CP 1243-8 IRC (6GK7243-8RX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1542SP-1 (6GK7542-6UX00-0XE0) (All versions < V2.3), SIMATIC CP 1542SP-1 IRC (6GK7542-6VX00-0XE0) (All versions < V2.3), SIMATIC CP 1543-1 (6GK7543-1AX00-0XE0) (All versions < V3.0.37), SIMATIC CP 1543SP-1 (6GK7543-6WX00-0XE0) (All versions < V2.3), SINAMICS S210 (6SL5...) (All versions >= V6.1 < V6.1 HF2), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (6AG2542-6VX00-4XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC (6AG1543-6WX00-7XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (6AG2543-6WX00-4XE0) (All versions < V2.3), SIPLUS NET CP 1543-1 (6AG1543-1AX00-2XE0) (All versions < V3.0.37). The webserver implementation of the affected products does not correctly release allocated memory after it has been used. An attacker with network access could use this vulnerability to cause a denial-of-service condition in the webserver of the affected product.
A vulnerability has been identified in SIMATIC PC-Station Plus (All versions), SIMATIC S7-400 CPU 412-2 PN V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions), SINAMICS S120 (incl. SIPLUS variants) (All versions < V5.2 SP3 HF15), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions). The affected products do not handle long file names correctly. This could allow an attacker to create a buffer overflow and create a denial of service condition for the device.
A vulnerability has been identified in SIMATIC PC-Station Plus (All versions), SIMATIC S7-400 CPU 412-2 PN V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions), SINAMICS S120 (incl. SIPLUS variants) (All versions < V5.2 SP3 HF15), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions). The affected products do not handle HTTP(S) requests to the web server correctly. This could allow an attacker to exhaust system resources and create a denial of service condition for the device.
A vulnerability has been identified in SIMATIC STEP 7 (TIA Portal) (All versions < V19). An information disclosure vulnerability could allow a local attacker to gain access to the access level password of the SIMATIC S7-1200 and S7-1500 CPUs, when entered by a legitimate user in the hardware configuration of the affected application.
The Datalogics APDFL library used in affected products is vulnerable to memory corruption condition while parsing specially crafted PDF files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in COMOS (All versions). The affected application lacks proper access controls in making the SQLServer connection. This could allow an attacker to query the database directly to access information that the user should not have access to.
A vulnerability has been identified in Siemens OPC UA Modelling Editor (SiOME) (All versions < V2.8). Affected products suffer from a XML external entity (XXE) injection vulnerability. This vulnerability could allow an attacker to interfere with an application's processing of XML data and read arbitrary files in the system.
A vulnerability has been identified in SIMATIC PCS neo (All versions < V4.1). There is a stored cross-site scripting vulnerability in the Administration Console of the affected product, that could allow an attacker with high privileges to inject Javascript code into the application that is later executed by another legitimate user.
A vulnerability has been identified in SIMATIC PCS neo (All versions < V4.1). When accessing the Information Server from affected products, the products use an overly permissive CORS policy. This could allow an attacker to trick a legitimate user to trigger unwanted behavior.
A vulnerability has been identified in SIMATIC PCS neo (All versions < V4.1). The PUD Manager of affected products does not properly neutralize user provided inputs. This could allow an authenticated adjacent attacker to execute SQL statements in the underlying database.
A vulnerability has been identified in SIMATIC PCS neo (All versions < V4.1). The PUD Manager of affected products does not properly authenticate users in the PUD Manager web service. This could allow an unauthenticated adjacent attacker to generate a privileged token and upload additional documents.
A vulnerability has been identified in Mendix Applications using Mendix 10 (All versions < V10.4.0), Mendix Applications using Mendix 7 (All versions < V7.23.37), Mendix Applications using Mendix 8 (All versions < V8.18.27), Mendix Applications using Mendix 9 (All versions < V9.24.10). A capture-replay flaw in the platform could have an impact to apps built with the platform, if certain preconditions are met that depend on the app's model and access control design. This could allow authenticated attackers to access or modify objects without proper authorization, or escalate privileges in the context of the vulnerable app.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.0), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.0), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.0), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.0), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.0), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.0), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.0), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.0), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.0), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.0), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.0), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.0), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.0), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.0), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.0), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices allow to change the password, but insufficiently check which password is to be changed. With this an authenticated attacker could, under certain conditions, be able to change the password of another, potential admin user, which could allow to escalate privileges.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.0), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.0), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.0), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.0), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.0), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.0), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.0), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.0), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.0), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.0), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.0), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.0), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.0), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.0), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.0), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.0), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V2.4.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V2.4.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V2.4.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V2.4.0), SCALANCE WAM766-1 (EU) (6GK5766-1GE00-7DA0) (All versions < V2.4.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V2.4.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V2.4.0), SCALANCE WAM766-1 EEC (EU) (6GK5766-1GE00-7TA0) (All versions < V2.4.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V2.4.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V2.4.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V2.4.0), SCALANCE WUB762-1 (6GK5762-1AJ00-2AA0) (All versions < V2.4.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V2.4.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V2.4.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V2.4.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V2.4.0), SCALANCE WUM766-1 (EU) (6GK5766-1GE00-3DA0) (All versions < V2.4.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V2.4.0), SCALANCE WUM766-1 (US) (6GK5766-1GE00-3DB0) (All versions < V2.4.0). Affected devices do not properly sanitize an input field. This could allow an authenticated remote attacker with administrative privileges to inject code or spawn a system root shell. Follow-up of CVE-2022-36323.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.0), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.0), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.0), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.0), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.0), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.0), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.0), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.0), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.0), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.0), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.0), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.0), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.0), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.0), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.0), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.0), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices can be configured to send emails when certain events occur on the device. When presented with an invalid response from the SMTP server, the device triggers an error that disrupts email sending. An attacker with access to the network can use this to do disable notification of users when certain events occur.
Affected devices do not properly validate the length of inputs when performing certain configuration changes in the web interface allowing an authenticated attacker to cause a denial of service condition. The device needs to be restarted for the web interface to become available again.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V7.2.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V7.2.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V7.2.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V7.2.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V7.2.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V7.2.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V7.2.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V7.2.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V7.2.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V7.2.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V7.2.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V7.2.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V7.2.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V7.2.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V7.2.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V7.2.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V7.2.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V7.2.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V7.2.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V7.2.2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices do not properly validate the authentication when performing certain modifications in the web interface allowing an authenticated attacker to influence the user interface configured by an administrator.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V8.0), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V8.0), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V8.0), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V8.0), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V8.0), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V8.0), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V8.0), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V8.0), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V8.0), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V8.0), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V8.0), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V8.0), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V8.0), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V8.0), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V8.0), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V8.0), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V8.0), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V8.0), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected devices use a weak checksum algorithm to protect the configuration backup that an administrator can export from the device. This could allow an authenticated attacker with administrative privileges or an attacker that tricks a legitimate administrator to upload a modified configuration file to change the configuration of an affected device.
Affected devices use a hardcoded key to obfuscate the configuration backup that an administrator can export from the device. This could allow an authenticated attacker with administrative privileges or an attacker that obtains a configuration backup to extract configuration information from the exported file.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V7.2.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V7.2.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V7.2.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V7.2.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V7.2.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V7.2.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V7.2.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V7.2.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V7.2.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V7.2.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V7.2.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V7.2.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V7.2.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V7.2.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V7.2.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V7.2.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V7.2.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V7.2.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V7.2.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V7.2.2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0) (All versions < V3.0.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V3.0.0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0) (All versions < V3.0.0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V3.0.0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0) (All versions < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0) (All versions < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V3.0.0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0) (All versions < V3.0.0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0) (All versions < V3.0.0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0) (All versions < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V3.0.0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0) (All versions < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V3.0.0). Affected products do not properly validate the content of uploaded X509 certificates which could allow an attacker with administrative privileges to execute arbitrary code on the device.
A vulnerability has been identified in COMOS (All versions). The affected application lacks proper access controls in SMB shares. This could allow an attacker to access files that the user should not have access to.
A vulnerability has been identified in COMOS (All versions < V10.4.4). Ptmcast executable used for testing cache validation service in affected application is vulnerable to Structured Exception Handler (SEH) based buffer overflow. This could allow an attacker to execute arbitrary code on the target system or cause denial of service condition.
A vulnerability has been identified in COMOS (All versions < V10.4.4). Caching system in the affected application leaks sensitive information such as user and project information in cleartext via UDP.
A vulnerability has been identified in Parasolid V35.0 (All versions < V35.0.262), Parasolid V35.1 (All versions < V35.1.250), Parasolid V36.0 (All versions < V36.0.169), Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected applications contain a stack overflow vulnerability while parsing specially crafted IGS files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21290)
A vulnerability has been identified in SICAM PAS/PQS (All versions >= V8.00 < V8.20). The affected application is installed with specific files and folders with insecure permissions. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges to `NT AUTHORITY/SYSTEM`.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected applications contain a type confusion vulnerability while parsing specially crafted IGS files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21268)
A vulnerability has been identified in SINEC NMS (All versions < V2.0). The affected application improperly sanitizes certain SNMP configuration data retrieved from monitored devices. An attacker with access to a monitored device could prepare a stored cross-site scripting (XSS) attack that may lead to unintentional modification of application data by legitimate users.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0009), Tecnomatix Plant Simulation V2302 (All versions < V2302.0003). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in CP-8031 MASTER MODULE (All versions < CPCI85 V05.11), CP-8050 MASTER MODULE (All versions < CPCI85 V05.11). The web server of affected devices fails to properly sanitize user input for the /sicweb-ajax/tmproot/ endpoint. This could allow an authenticated remote attacker to traverse directories on the system and download arbitrary files. By exploring active session IDs, the vulnerability could potentially be leveraged to escalate privileges to the administrator role.
A vulnerability has been identified in SICAM PAS/PQS (All versions >= V8.00 < V8.22). The affected application is installed with specific files and folders with insecure permissions. This could allow an authenticated local attacker to read and modify configuration data in the context of the application process.
A vulnerability has been identified in SIMATIC CP 1604 (All versions), SIMATIC CP 1616 (All versions), SIMATIC CP 1623 (All versions), SIMATIC CP 1626 (All versions), SIMATIC CP 1628 (All versions). Affected devices insufficiently control continuous mapping of direct memory access (DMA) requests. This could allow local attackers with administrative privileges to cause a denial of service situation on the host. A physical power cycle is required to get the system working again.
A vulnerability has been identified in SIMATIC CP 1604 (All versions), SIMATIC CP 1616 (All versions), SIMATIC CP 1623 (All versions), SIMATIC CP 1626 (All versions), SIMATIC CP 1628 (All versions). The kernel memory of affected devices is exposed to user-mode via direct memory access (DMA) which could allow a local attacker with administrative privileges to execute arbitrary code on the host system without any restrictions.
A vulnerability has been identified in CP-8031 MASTER MODULE (All versions < CPCI85 V05.11 (only with activated debug support)), CP-8050 MASTER MODULE (All versions < CPCI85 V05.11 (only with activated debug support)). The affected devices contain a hard-coded ID in the SSH `authorized_keys` configuration file. An attacker with knowledge of the corresponding private key could login to the device via SSH. Only devices with activated debug support are affected.
A vulnerability has been identified in SINEMA Server V14 (All versions). The affected application improperly sanitizes certain SNMP configuration data retrieved from monitored devices. An attacker with access to a monitored device could perform a stored cross-site scripting (XSS) attack that may lead to arbitrary code execution with `SYSTEM` privileges on the application server. (ZDI-CAN-19823)
A vulnerability has been identified in SINEC NMS (All versions < V2.0). The affected application assigns improper access rights to specific folders containing executable files and libraries. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges.
A vulnerability has been identified in SIMATIC PCS neo (Administration Console) V4.0 (All versions), SIMATIC PCS neo (Administration Console) V4.0 Update 1 (All versions). The affected application leaks Windows admin credentials. An attacker with local access to the Administration Console could get the credentials, and impersonate the admin user, thereby gaining admin access to other Windows systems.
A vulnerability has been identified in Spectrum Power 7 (All versions < V23Q3). The affected product assigns improper access rights to the update script. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application is vulnerable to memory corruption while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V35.0 (All versions < V35.0.260), Parasolid V35.1 (All versions < V35.1.246), Parasolid V36.0 (All versions < V36.0.156), Simcenter Femap V2301 (All versions < V2301.0003), Simcenter Femap V2306 (All versions < V2306.0001). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21266)
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.253), Parasolid V35.1 (All versions < V35.1.184), Parasolid V36.0 (All versions < V36.0.142), Simcenter Femap V2301 (All versions < V2301.0003), Simcenter Femap V2306 (All versions < V2306.0001). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21263)
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The QMS.Mobile module of the affected application does not invalidate the session token on logout. This could allow an attacker to perform session hijacking attacks.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The affected application allows users to upload arbitrary file types. This could allow an attacker to upload malicious files, that could potentially lead to code tampering.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The QMS.Mobile module of the affected application lacks sufficient authorization checks. This could allow an attacker to access confidential information, perform administrative functions, or lead to a denial-of-service condition.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The affected application lacks security control to prevent unencrypted communication without HTTPS. An attacker who managed to gain machine-in-the-middle position could manipulate, or steal confidential information.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The QMS.Mobile module of the affected application stores sensitive application data in an external insecure storage. This could allow an attacker to alter content, leading to arbitrary code execution or denial-of-service condition.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The QMS.Mobile module of the affected application uses weak outdated application signing mechanism. This could allow an attacker to tamper the application code.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The affected application server responds with sensitive information about the server. This could allow an attacker to directly access the database.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). The affected application returns inconsistent error messages in response to invalid user credentials during login session. This allows an attacker to enumerate usernames, and identify valid usernames.
A vulnerability has been identified in QMS Automotive (All versions < V12.39). User credentials are found in memory as plaintext. An attacker could perform a memory dump, and get access to credentials, and use it for impersonation.
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21041)
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application contains a use-after-free vulnerability that could be triggered while parsing specially crafted WRL files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-20842)
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application contains a type confusion vulnerability while parsing WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20840)
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application contains a type confusion vulnerability while parsing WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20826)
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20825)
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20824)
A vulnerability has been identified in JT2Go (All versions < V14.3.0.1), Teamcenter Visualization V13.3 (All versions < V13.3.0.12), Teamcenter Visualization V14.0 (All versions), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.1), Tecnomatix Plant Simulation V2201 (All versions < V2201.0010), Tecnomatix Plant Simulation V2302 (All versions < V2302.0004). The affected application is vulnerable to stack-based buffer overflow while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20818)
The OPC UA implementations (ANSI C and C++) in affected products contain an integer overflow vulnerability that could cause the application to run into an infinite loop during certificate validation. This could allow an unauthenticated remote attacker to create a denial of service condition by sending a specially crafted certificate.
efibootguard is a simple UEFI boot loader with support for safely switching between current and updated partition sets. Insufficient or missing validation and sanitization of input from untrustworthy bootloader environment files can cause crashes and probably also code injections into `bg_setenv`) or programs using `libebgenv`. This is triggered when the affected components try to modify a manipulated environment, in particular its user variables. Furthermore, `bg_printenv` may crash over invalid read accesses or report invalid results. Not affected by this issue is EFI Boot Guard's bootloader EFI binary. EFI Boot Guard release v0.15 contains required patches to sanitize and validate the bootloader environment prior to processing it in userspace. Its library and tools should be updated, so should programs statically linked against it. An update of the bootloader EFI executable is not required. The only way to prevent the issue with an unpatched EFI Boot Guard version is to avoid accesses to user variables, specifically modifications to them.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 2). The affected application contains a use-after-free vulnerability that could be triggered while parsing specially crafted DWG file. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-19562)
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds write past the end of an allocated structure while parsing specially crafted DFT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. The web server of the affected devices contains a vulnerability that may lead to a denial of service condition. An attacker may cause total loss of availability of the web server, which might recover after the attack is over.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted DFT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted DFT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted DFT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PSM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PSM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted DFT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 7). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted PAR file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.5), Teamcenter Visualization V13.2 (All versions < V13.2.0.14), Teamcenter Visualization V14.1 (All versions < V14.1.0.10), Teamcenter Visualization V14.2 (All versions < V14.2.0.5). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted TIFF file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.5), Teamcenter Visualization V13.2 (All versions < V13.2.0.14), Teamcenter Visualization V14.1 (All versions < V14.1.0.10), Teamcenter Visualization V14.2 (All versions < V14.2.0.5). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted TIFF files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted IGS file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21270)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21132)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21106)
A vulnerability has been identified in SICAM TOOLBOX II (All versions < V07.10). The affected application's database service is executed as `NT AUTHORITY\SYSTEM`. This could allow a local attacker to execute operating system commands with elevated privileges.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.171), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected application contains a stack exhaustion vulnerability while parsing a specially crafted X_T file. This could allow an attacker to cause denial of service condition.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.184), Teamcenter Visualization V14.1 (All versions), Teamcenter Visualization V14.2 (All versions < V14.2.0.12), Teamcenter Visualization V14.3 (All versions < V14.3.0.9), Teamcenter Visualization V2312 (All versions < V2312.0004). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.171), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.184), Teamcenter Visualization V14.1 (All versions), Teamcenter Visualization V14.2 (All versions < V14.2.0.12), Teamcenter Visualization V14.3 (All versions < V14.3.0.9), Teamcenter Visualization V2312 (All versions < V2312.0004). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.197), Parasolid V35.1 (All versions < V35.1.184), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted X_T file. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Teamcenter Visualization V14.1 (All versions), Teamcenter Visualization V14.2 (All versions < V14.2.0.12), Teamcenter Visualization V14.3 (All versions < V14.3.0.9), Teamcenter Visualization V2312 (All versions < V2312.0004). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.171), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.171), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.1 (All versions < V34.1.258), Parasolid V35.0 (All versions < V35.0.254), Parasolid V35.1 (All versions < V35.1.171), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.6), Teamcenter Visualization V14.3 (All versions < V14.3.0.3). The affected applications contain null pointer dereference while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.4). The affected applications accept unauthenticated file write messages. An unauthenticated remote attacker could write arbitrary files to the affected application's file system.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.4). The affected applications is vulnerable to SQL injection. This could allow an unauthenticated remote attackers to execute arbitrary SQL queries on the server database.
A vulnerability has been identified in JT Open (All versions < V11.4), JT Utilities (All versions < V13.4). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT Open (All versions < V11.4), JT Utilities (All versions < V13.4), Parasolid V34.0 (All versions < V34.0.253), Parasolid V34.1 (All versions < V34.1.243), Parasolid V35.0 (All versions < V35.0.177), Parasolid V35.1 (All versions < V35.1.073). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.5), Solid Edge SE2022 (All versions < V222.0 Update 13), Solid Edge SE2023 (All versions < V223.0 Update 4), Teamcenter Visualization V13.2 (All versions < V13.2.0.15), Teamcenter Visualization V13.3 (All versions < V13.3.0.11), Teamcenter Visualization V14.1 (All versions < V14.1.0.11), Teamcenter Visualization V14.2 (All versions < V14.2.0.5). The affected application contains a use-after-free vulnerability that could be triggered while parsing specially crafted ASM file. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.4). The affected applications is vulnerable to SQL injection. This could allow an authenticated remote attackers to execute arbitrary SQL queries on the server database and escalate privileges.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. The affected products insufficiently block data from being forwarded over the mirror port into the mirrored network. An attacker could use this behavior to transmit malicious packets to systems in the mirrored network, possibly influencing their configuration and runtime behavior.
A vulnerability has been identified in SICAM TOOLBOX II (All versions < V07.10). Affected applications do not properly set permissions for product folders. This could allow an authenticated attacker with low privileges to replace DLLs and conduct a privilege escalation.
A vulnerability has been identified in Siemens Software Center (All versions < V3.0). A DLL Hijacking vulnerability could allow a local attacker to execute code with elevated privileges by placing a malicious DLL in one of the directories on the DLL search path.
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application contains a type confusion vulnerability while parsing STP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21051)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application is vulnerable to stack-based buffer overflow while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21060)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application is vulnerable to stack-based buffer overflow while parsing specially crafted STP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21054)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted PAR file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21155)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21138)
A vulnerability has been identified in Tecnomatix Plant Simulation V2201 (All versions < V2201.0008), Tecnomatix Plant Simulation V2302 (All versions < V2302.0002). The affected application is vulnerable to heap-based buffer overflow while parsing specially crafted PRT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21109)
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The SCEP CA Certificate Name parameter in the web interface of affected devices is vulnerable to command injection due to missing server side input sanitation. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The SCEP server configuration URL parameter in the web interface of affected devices is vulnerable to command injection due to missing server side input sanitation. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The uninstall-app App-name parameter in the web interface of affected devices is vulnerable to command injection due to missing server side input sanitation. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The upgrade-app URL parameter in the web interface of affected devices is vulnerable to command injection due to missing server side input sanitation. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The install-app URL parameter in the web interface of affected devices is vulnerable to command injection due to missing server side input sanitation. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The software-upgrade Url parameter in the web interface of affected devices is vulnerable to command injection due to missing server side input sanitation. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The webserver of the affected devices support insecure TLS 1.0 protocol. An attacker could achieve a man-in-the-middle attack and compromise confidentiality and integrity of data.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The affected devices are configured to offer weak ciphers by default. This could allow an unauthorized attacker in a man-in-the-middle position to read and modify any data passed over to and from the affected device.
A vulnerability has been identified in SIMATIC MV540 H (All versions < V3.3.4), SIMATIC MV540 S (All versions < V3.3.4), SIMATIC MV550 H (All versions < V3.3.4), SIMATIC MV550 S (All versions < V3.3.4), SIMATIC MV560 U (All versions < V3.3.4), SIMATIC MV560 X (All versions < V3.3.4). The result synchronization server of the affected products contains a vulnerability that may lead to a denial of service condition. An attacker may cause a denial of service situation of all socket-based communication of the affected products if the result server is enabled.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link. The value is reflected in the response without sanitization while throwing an “invalid params element name” error on the action parameters.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link. The malformed value is reflected directly in the response without sanitization while throwing an “invalid path” error.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link. The value is reflected in the response without sanitization while throwing an “invalid params element name” error on the get_elements parameters.
A vulnerability has been identified in SIMATIC MV540 H (All versions < V3.3.4), SIMATIC MV540 S (All versions < V3.3.4), SIMATIC MV550 H (All versions < V3.3.4), SIMATIC MV550 S (All versions < V3.3.4), SIMATIC MV560 U (All versions < V3.3.4), SIMATIC MV560 X (All versions < V3.3.4). Affected devices cannot properly process specially crafted Ethernet frames sent to the devices. This could allow an unauthenticated remote attacker to cause a denial of service condition. The affected devices must be restarted manually.
A vulnerability has been identified in SIMATIC MV540 H (All versions < V3.3.4), SIMATIC MV540 S (All versions < V3.3.4), SIMATIC MV550 H (All versions < V3.3.4), SIMATIC MV550 S (All versions < V3.3.4), SIMATIC MV560 U (All versions < V3.3.4), SIMATIC MV560 X (All versions < V3.3.4). Affected devices cannot properly process specially crafted IP packets sent to the devices. This could allow an unauthenticated remote attacker to cause a denial of service condition. The affected devices must be restarted manually.
A vulnerability has been identified in SiPass integrated (All versions < V2.90.3.8). Affected server applications improperly check the size of data packets received for the configuration client login, causing a stack-based buffer overflow. This could allow an unauthenticated remote attacker to crash the server application, creating a denial of service condition.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). Affected devices do not properly handle malformed HTTP packets. This could allow an unauthenticated remote attacker to send a malformed HTTP packet causing certain functions to fail in a controlled manner.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.16.0), RUGGEDCOM ROX MX5000RE (All versions < V2.16.0), RUGGEDCOM ROX RX1400 (All versions < V2.16.0), RUGGEDCOM ROX RX1500 (All versions < V2.16.0), RUGGEDCOM ROX RX1501 (All versions < V2.16.0), RUGGEDCOM ROX RX1510 (All versions < V2.16.0), RUGGEDCOM ROX RX1511 (All versions < V2.16.0), RUGGEDCOM ROX RX1512 (All versions < V2.16.0), RUGGEDCOM ROX RX1524 (All versions < V2.16.0), RUGGEDCOM ROX RX1536 (All versions < V2.16.0), RUGGEDCOM ROX RX5000 (All versions < V2.16.0). The web interface of the affected devices are vulnerable to Cross-Site Request Forgery attacks. By tricking an authenticated victim user to click a malicious link, an attacker could perform arbitrary actions on the device on behalf of the victim user.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.3), Teamcenter Visualization V13.2 (All versions < V13.2.0.13), Teamcenter Visualization V13.3 (All versions < V13.3.0.10), Teamcenter Visualization V14.0 (All versions < V14.0.0.6), Teamcenter Visualization V14.1 (All versions < V14.1.0.8), Teamcenter Visualization V14.2 (All versions < V14.2.0.3). The affected applications contain a memory corruption vulnerability while parsing specially crafted CGM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.3), Teamcenter Visualization V13.2 (All versions < V13.2.0.13), Teamcenter Visualization V13.3 (All versions < V13.3.0.10), Teamcenter Visualization V14.0 (All versions < V14.0.0.6), Teamcenter Visualization V14.1 (All versions < V14.1.0.8), Teamcenter Visualization V14.2 (All versions < V14.2.0.3). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted CGM files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.3), Teamcenter Visualization V13.2 (All versions < V13.2.0.13), Teamcenter Visualization V13.3 (All versions < V13.3.0.10), Teamcenter Visualization V14.0 (All versions < V14.0.0.6), Teamcenter Visualization V14.1 (All versions < V14.1.0.8), Teamcenter Visualization V14.2 (All versions < V14.2.0.3). The affected applications contain an out of bounds read past the end of an allocated buffer while parsing a specially crafted CGM file. This vulnerability could allow an attacker to disclose sensitive information.
A vulnerability has been identified in JT2Go (All versions < V14.2.0.3), Teamcenter Visualization V13.2 (All versions < V13.2.0.13), Teamcenter Visualization V13.3 (All versions < V13.3.0.10), Teamcenter Visualization V14.0 (All versions < V14.0.0.6), Teamcenter Visualization V14.1 (All versions < V14.1.0.8), Teamcenter Visualization V14.2 (All versions < V14.2.0.3). The affected applications contain a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in SIMATIC WinCC (All versions < V7.5.2.13). Affected applications fail to set proper access rights for their installation folder if a non-default installation path was chosen during installation. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges.
A vulnerability has been identified in Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions), Totally Integrated Automation Portal (TIA Portal) V18 (All versions), Totally Integrated Automation Portal (TIA Portal) V19 (All versions), Totally Integrated Automation Portal (TIA Portal) V20 (All versions). The know-how protection feature in affected products does not properly update the encryption of existing program blocks when a project file is updated. This could allow attackers with access to the project file to recover previous - yet unprotected - versions of the project without the knowledge of the know-how protection password.
A vulnerability has been identified in SIMATIC NET PC Software V14 (All versions), SIMATIC NET PC Software V15 (All versions), SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions), SIMATIC PCS 7 V9.1 (All versions), SIMATIC WinCC (All versions < V8.0), SINAUT Software ST7sc (All versions). Before SIMATIC WinCC V8, legacy OPC services (OPC DA (Data Access), OPC HDA (Historical Data Access), and OPC AE (Alarms & Events)) were used per default. These services were designed on top of the Windows ActiveX and DCOM mechanisms and do not implement state-of-the-art security mechanisms for authentication and encryption of contents.
A vulnerability has been identified in SIMOTION C240 (All versions >= V5.4 < V5.5 SP1), SIMOTION C240 PN (All versions >= V5.4 < V5.5 SP1), SIMOTION D410-2 DP (All versions >= V5.4 < V5.5 SP1), SIMOTION D410-2 DP/PN (All versions >= V5.4 < V5.5 SP1), SIMOTION D425-2 DP (All versions >= V5.4 < V5.5 SP1), SIMOTION D425-2 DP/PN (All versions >= V5.4 < V5.5 SP1), SIMOTION D435-2 DP (All versions >= V5.4 < V5.5 SP1), SIMOTION D435-2 DP/PN (All versions >= V5.4 < V5.5 SP1), SIMOTION D445-2 DP/PN (All versions >= V5.4), SIMOTION D445-2 DP/PN (All versions >= V5.4 < V5.5 SP1), SIMOTION D455-2 DP/PN (All versions >= V5.4 < V5.5 SP1), SIMOTION P320-4 E (All versions >= V5.4), SIMOTION P320-4 S (All versions >= V5.4). When operated with Security Level Low the device does not protect access to certain services relevant for debugging. This could allow an unauthenticated attacker to extract confidential technology object (TO) configuration from the device.
A vulnerability has been identified in SIMATIC PCS 7 (All versions < V9.1 SP2 UC04), SIMATIC S7-PM (All versions < V5.7 SP1 HF1), SIMATIC S7-PM (All versions < V5.7 SP2 HF1), SIMATIC STEP 7 V5 (All versions < V5.7). The affected product contains a database management system that could allow remote users with low privileges to use embedded functions of the database (local or in a network share) that have impact on the server. An attacker with network access to the server network could leverage these embedded functions to run code with elevated privileges in the database management system's server.
Datalogics Library APDFLThe v18.0.4PlusP1e and prior contains a stack-based buffer overflow due to documents containing corrupted fonts, which could allow an attack that causes an unhandled crash during the rendering process.
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 3), Solid Edge SE2023 (All versions < V223.0 Update 2). Affected applications contain a memory corruption vulnerability while parsing specially crafted STP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19561)
A vulnerability has been identified in Solid Edge SE2023 (All versions < V223.0 Update 3), Solid Edge SE2023 (All versions < V223.0 Update 2). Affected applications contain an out of bounds read past the end of an allocated buffer while parsing a specially crafted OBJ file. This vulnerability could allow an attacker to disclose sensitive information. (ZDI-CAN-19426)
A vulnerability has been identified in Siveillance Video 2020 R2 (All versions < V20.2 HotfixRev14), Siveillance Video 2020 R3 (All versions < V20.3 HotfixRev12), Siveillance Video 2021 R1 (All versions < V21.1 HotfixRev12), Siveillance Video 2021 R2 (All versions < V21.2 HotfixRev8), Siveillance Video 2022 R1 (All versions < V22.1 HotfixRev7), Siveillance Video 2022 R2 (All versions < V22.2 HotfixRev5), Siveillance Video 2022 R3 (All versions < V22.3 HotfixRev2), Siveillance Video 2023 R1 (All versions < V23.1 HotfixRev1). The Management Server component of affected applications deserializes data without sufficient validations. This could allow an authenticated remote attacker to execute code on the affected system.
A vulnerability has been identified in Siveillance Video 2020 R2 (All versions < V20.2 HotfixRev14), Siveillance Video 2020 R3 (All versions < V20.3 HotfixRev12), Siveillance Video 2021 R1 (All versions < V21.1 HotfixRev12), Siveillance Video 2021 R2 (All versions < V21.2 HotfixRev8), Siveillance Video 2022 R1 (All versions < V22.1 HotfixRev7), Siveillance Video 2022 R2 (All versions < V22.2 HotfixRev5), Siveillance Video 2022 R3 (All versions < V22.3 HotfixRev2), Siveillance Video 2023 R1 (All versions < V23.1 HotfixRev1). The Event Server component of affected applications deserializes data without sufficient validations. This could allow an authenticated remote attacker to execute code on the affected system.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The filename in the upload feature of the web based management of the affected device is susceptible to a path traversal vulnerability. This could allow an authenticated privileged remote attacker to write any file with the extension `.db`.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The export endpoint discloses some undocumented files. This could allow an unauthenticated remote attacker to gain access to additional information resources.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The export endpoint is accessible via REST API without authentication. This could allow an unauthenticated remote attacker to download the files available via the endpoint.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The filename in the upload feature of the web based management of the affected device is susceptible to a path traversal vulnerability. This could allow an authenticated privileged remote attacker to overwrite any file the Linux user `ccuser` has write access to, or to download any file the Linux user `ccuser` has read-only access to.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The web based management of affected devices does not properly validate user input, making it susceptible to command injection. This could allow an authenticated privileged remote attacker to execute arbitrary code with root privileges.
A vulnerability has been identified in SCALANCE LPE9403 (All versions < V2.1). A heap-based buffer overflow vulnerability was found in the `edgebox_web_app` binary. The binary will crash if supplied with a backup password longer than 255 characters. This could allow an authenticated privileged attacker to cause a denial of service.
A vulnerability has been identified in SCALANCE LPE9403 (All versions < V2.1). A path traversal vulnerability was found in the `deviceinfo` binary via the `mac` parameter. This could allow an authenticated attacker with access to the SSH interface on the affected device to read the contents of any file named `address`.
A vulnerability has been identified in SCALANCE LPE9403 (All versions < V2.1). The `i2c` mutex file is created with the permissions bits of `-rw-rw-rw-`. This file is used as a mutex for multiple applications interacting with i2c. This could allow an authenticated attacker with access to the SSH interface on the affected device to interfere with the integrity of the mutex and the data it protects.
A vulnerability has been identified in SCALANCE LPE9403 (All versions < V2.1). The web based management of affected device does not properly validate user input, making it susceptible to command injection. This could allow an authenticated remote attacker to access the underlying operating system as the root user.
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT PRO (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2P IRT (All versions < V5.5.2), SCALANCE X202-2P IRT PRO (All versions < V5.5.2), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT PRO (All versions < V5.5.2), SCALANCE XF201-3P IRT (All versions < V5.5.2), SCALANCE XF202-2P IRT (All versions < V5.5.2), SCALANCE XF204-2BA IRT (All versions < V5.5.2), SCALANCE XF204IRT (All versions < V5.5.2), SIPLUS NET SCALANCE X202-2P IRT (All versions < V5.5.2). The SSH server on affected devices is configured to offer weak ciphers by default. This could allow an unauthorized attacker in a man-in-the-middle position to read and modify any data passed over the connection between legitimate clients and the affected device.
A vulnerability has been identified in JT Open (All versions < V11.3.2.0), JT Utilities (All versions < V13.3.0.0). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Polarion ALM (All versions < V22R2). The application contains a XML External Entity Injection (XXE) vulnerability. This could allow an attacker to view files on the application server filesystem.
A vulnerability has been identified in SIPROTEC 5 6MD85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 6MD86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 6MD89 (CP300) (All versions >= V7.80 < V9.64), SIPROTEC 5 6MU85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7KE85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SA82 (CP100) (All versions), SIPROTEC 5 7SA82 (CP150) (All versions < V9.40), SIPROTEC 5 7SA86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SA87 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SD82 (CP100) (All versions), SIPROTEC 5 7SD82 (CP150) (All versions < V9.40), SIPROTEC 5 7SD86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SD87 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SJ81 (CP100) (All versions < V8.89), SIPROTEC 5 7SJ81 (CP150) (All versions < V9.40), SIPROTEC 5 7SJ82 (CP100) (All versions < V8.89), SIPROTEC 5 7SJ82 (CP150) (All versions < V9.40), SIPROTEC 5 7SJ85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SJ86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SK82 (CP100) (All versions < V8.89), SIPROTEC 5 7SK82 (CP150) (All versions < V9.40), SIPROTEC 5 7SK85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SL82 (CP100) (All versions), SIPROTEC 5 7SL82 (CP150) (All versions < V9.40), SIPROTEC 5 7SL86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SL87 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SS85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7ST85 (CP300) (All versions >= V7.80 < V9.64), SIPROTEC 5 7ST86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7SX82 (CP150) (All versions < V9.40), SIPROTEC 5 7SX85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7UM85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7UT82 (CP100) (All versions), SIPROTEC 5 7UT82 (CP150) (All versions < V9.40), SIPROTEC 5 7UT85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7UT86 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7UT87 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7VE85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7VK87 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 7VU85 (CP300) (All versions >= V7.80 < V9.40), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions < V9.40 installed on CP150 and CP300 devices), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions < V8.89 installed on CP100 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions < V9.40 installed on CP150 and CP300 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions < V8.89 installed on CP100 devices), SIPROTEC 5 Communication Module ETH-BD-2FO (All versions < V9.40), SIPROTEC 5 Compact 7SX800 (CP050) (All versions < V9.40). Affected devices lack proper validation of http request parameters of the hosted web service. An unauthenticated remote attacker could send specially crafted packets that could cause denial of service condition of the target device.
A vulnerability has been identified in CP-8031 MASTER MODULE (All versions < CPCI85 V05), CP-8050 MASTER MODULE (All versions < CPCI85 V05). Affected devices are vulnerable to command injection via the web server port 443/tcp, if the parameter “Remote Operation” is enabled. The parameter is disabled by default. The vulnerability could allow an unauthenticated remote attacker to perform arbitrary code execution on the device.
A vulnerability has been identified in Totally Integrated Automation Portal (TIA Portal) V15 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions < V16 Update 7), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 6), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 1). Affected products contain a path traversal vulnerability that could allow the creation or overwrite of arbitrary files in the engineering system. If the user is tricked to open a malicious PC system configuration file, an attacker could exploit this vulnerability to achieve arbitrary code execution.
A vulnerability has been identified in SIMATIC IPC1047 (All versions), SIMATIC IPC1047E (All versions with maxView Storage Manager < 4.09.00.25611 on Windows), SIMATIC IPC647D (All versions), SIMATIC IPC647E (All versions with maxView Storage Manager < 4.09.00.25611 on Windows), SIMATIC IPC847D (All versions), SIMATIC IPC847E (All versions with maxView Storage Manager < 4.09.00.25611 on Windows). The Adaptec Maxview application on affected devices is using a non-unique TLS certificate across installations to protect the communication from the local browser to the local application. A local attacker may use this key to decrypt intercepted local traffic between the browser and the application and could perform a man-in-the-middle attack in order to modify data in transit.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (6GK7242-7KX31-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-1 (6GK7243-1BX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-1 DNP3 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 IEC (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE EU (6GK7243-7KX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE US (6GK7243-7SX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-8 IRC (6GK7243-8RX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1542SP-1 (6GK7542-6UX00-0XE0) (All versions < V2.3), SIMATIC CP 1542SP-1 IRC (6GK7542-6VX00-0XE0) (All versions < V2.3), SIMATIC CP 1543SP-1 (6GK7543-6WX00-0XE0) (All versions < V2.3), SIMATIC CP 443-1 (6GK7443-1EX30-0XE0) (All versions < V3.3), SIMATIC CP 443-1 (6GK7443-1EX30-0XE1) (All versions < V3.3), SIMATIC CP 443-1 Advanced (6GK7443-1GX30-0XE0) (All versions < V3.3), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (6AG2542-6VX00-4XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC (6AG1543-6WX00-7XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (6AG2543-6WX00-4XE0) (All versions < V2.3), SIPLUS NET CP 1242-7 V2 (6AG1242-7KX31-7XE0) (All versions < V3.4.29), SIPLUS NET CP 443-1 (6AG1443-1EX30-4XE0) (All versions < V3.3), SIPLUS NET CP 443-1 Advanced (6AG1443-1GX30-4XE0) (All versions < V3.3), SIPLUS S7-1200 CP 1243-1 (6AG1243-1BX30-2AX0) (All versions < V3.4.29), SIPLUS S7-1200 CP 1243-1 RAIL (6AG2243-1BX30-1XE0) (All versions < V3.4.29), SIPLUS TIM 1531 IRC (6AG1543-1MX00-7XE0) (All versions < V2.3.6), TIM 1531 IRC (6GK7543-1MX00-0XE0) (All versions < V2.3.6). The webserver of the affected products contains a vulnerability that may lead to a denial of service condition. An attacker may cause a denial of service situation of the webserver of the affected product.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (6GK7242-7KX31-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-1 (6GK7243-1BX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-1 DNP3 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 IEC (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE EU (6GK7243-7KX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE US (6GK7243-7SX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-8 IRC (6GK7243-8RX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1542SP-1 (6GK7542-6UX00-0XE0) (All versions < V2.3), SIMATIC CP 1542SP-1 IRC (6GK7542-6VX00-0XE0) (All versions < V2.3), SIMATIC CP 1543SP-1 (6GK7543-6WX00-0XE0) (All versions < V2.3), SIMATIC CP 443-1 (6GK7443-1EX30-0XE0) (All versions < V3.3), SIMATIC CP 443-1 (6GK7443-1EX30-0XE1) (All versions < V3.3), SIMATIC CP 443-1 Advanced (6GK7443-1GX30-0XE0) (All versions < V3.3), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (6AG2542-6VX00-4XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC (6AG1543-6WX00-7XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (6AG2543-6WX00-4XE0) (All versions < V2.3), SIPLUS NET CP 1242-7 V2 (6AG1242-7KX31-7XE0) (All versions < V3.4.29), SIPLUS NET CP 443-1 (6AG1443-1EX30-4XE0) (All versions < V3.3), SIPLUS NET CP 443-1 Advanced (6AG1443-1GX30-4XE0) (All versions < V3.3), SIPLUS S7-1200 CP 1243-1 (6AG1243-1BX30-2AX0) (All versions < V3.4.29), SIPLUS S7-1200 CP 1243-1 RAIL (6AG2243-1BX30-1XE0) (All versions < V3.4.29), SIPLUS TIM 1531 IRC (6AG1543-1MX00-7XE0) (All versions < V2.3.6), TIM 1531 IRC (6GK7543-1MX00-0XE0) (All versions < V2.3.6). The webserver of the affected products contains a vulnerability that may lead to a denial of service condition. An attacker may cause a denial of service situation of the webserver of the affected product.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (6GK7242-7KX31-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-1 (6GK7243-1BX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-1 DNP3 (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-1 IEC (incl. SIPLUS variants) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE EU (6GK7243-7KX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-7 LTE US (6GK7243-7SX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1243-8 IRC (6GK7243-8RX30-0XE0) (All versions < V3.4.29), SIMATIC CP 1542SP-1 (6GK7542-6UX00-0XE0) (All versions < V2.3), SIMATIC CP 1542SP-1 IRC (6GK7542-6VX00-0XE0) (All versions < V2.3), SIMATIC CP 1543SP-1 (6GK7543-6WX00-0XE0) (All versions < V2.3), SIMATIC CP 443-1 (6GK7443-1EX30-0XE0) (All versions < V3.3), SIMATIC CP 443-1 (6GK7443-1EX30-0XE1) (All versions < V3.3), SIMATIC CP 443-1 Advanced (6GK7443-1GX30-0XE0) (All versions < V3.3), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (6AG2542-6VX00-4XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC (6AG1543-6WX00-7XE0) (All versions < V2.3), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (6AG2543-6WX00-4XE0) (All versions < V2.3), SIPLUS NET CP 1242-7 V2 (6AG1242-7KX31-7XE0) (All versions < V3.4.29), SIPLUS NET CP 443-1 (6AG1443-1EX30-4XE0) (All versions < V3.3), SIPLUS NET CP 443-1 Advanced (6AG1443-1GX30-4XE0) (All versions < V3.3), SIPLUS S7-1200 CP 1243-1 (6AG1243-1BX30-2AX0) (All versions < V3.4.29), SIPLUS S7-1200 CP 1243-1 RAIL (6AG2243-1BX30-1XE0) (All versions < V3.4.29), SIPLUS TIM 1531 IRC (6AG1543-1MX00-7XE0) (All versions < V2.3.6), TIM 1531 IRC (6GK7543-1MX00-0XE0) (All versions < V2.3.6). The webserver of the affected products contains a vulnerability that may lead to a denial of service condition. An attacker may cause a denial of service situation which leads to a restart of the webserver of the affected product.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.3). The audit log form of affected applications is vulnerable to SQL injection. This could allow authenticated remote attackers to execute arbitrary SQL queries on the server database.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.3). The client query handler of the affected application fails to check for proper permissions for specific read queries. This could allow authenticated remote attackers to access data they are not authorized for.
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application is vulnerable to stack-based buffer while parsing specially crafted SPP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-20449)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20432)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application is vulnerable to stack-based buffer while parsing specially crafted SPP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-20433)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains a memory corruption vulnerability while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20303, ZDI-CAN-20348)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20334)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted SPP files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20308, ZDI-CAN-20345)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20300)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20299, ZDI-CAN-20346)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-20304)
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.2). The client query handler of the affected application fails to check for proper permissions when assigning groups to user accounts. This could allow an authenticated remote attacker to assign administrative groups to otherwise non-privileged user accounts.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.2). The client query handler of the affected application fails to check for proper permissions for specific write queries. This could allow an authenticated remote attacker to perform unauthorized actions.
A vulnerability has been identified in Parasolid V34.0 (All versions < V34.0.254), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Parasolid V35.1 (All versions < V35.1.150), Solid Edge SE2022 (All versions < V222.0MP12). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19818)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19817)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19816)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19815)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19814)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19813)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19812)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19811)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19810)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19809)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19808)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19807)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19806)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19805)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19804)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19791)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19790)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted SPP file. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19789)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V2201.0006). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted SPP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-19788)
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected application contains a use-after-free vulnerability that could be triggered while parsing specially crafted STP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-19425)
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to stack-based buffer while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-19472)
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected application contains an out of bounds read past the end of an allocated buffer while parsing a specially crafted STL file. This vulnerability could allow an attacker to disclose sensitive information. (ZDI-CAN-19428)
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected application contains a memory corruption vulnerability while parsing specially crafted DWG files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19069)
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing a specially crafted PAR file. This could allow an attacker to to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application contains an out of bounds read past the end of an allocated buffer while parsing a specially crafted PAR file. This could allow an attacker to to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to heap-based buffer underflow while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to heap-based buffer while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2023 (All versions < V223.0Update2). The affected application is vulnerable to stack-based buffer while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in COMOS V10.2 (All versions), COMOS V10.3.3.1 (All versions < V10.3.3.1.45), COMOS V10.3.3.2 (All versions < V10.3.3.2.33), COMOS V10.3.3.3 (All versions < V10.3.3.3.9), COMOS V10.3.3.4 (All versions < V10.3.3.4.6), COMOS V10.4.0.0 (All versions < V10.4.0.0.31), COMOS V10.4.1.0 (All versions < V10.4.1.0.32), COMOS V10.4.2.0 (All versions < V10.4.2.0.25). Cache validation service in COMOS is vulnerable to Structured Exception Handler (SEH) based buffer overflow. This could allow an attacker to execute arbitrary code on the target system or cause denial of service condition.
A vulnerability has been identified in JT Open (All versions < V11.2.3.0), JT Utilities (All versions < V13.2.3.0). The affected application contains a memory corruption vulnerability while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT Open (All versions < V11.2.3.0), JT Utilities (All versions < V13.2.3.0), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Parasolid V35.1 (All versions < V35.1.150). The affected application contains a stack overflow vulnerability while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in TIA Multiuser Server V14 (All versions), TIA Multiuser Server V15 (All versions < V15.1 Update 8), TIA Project-Server (All versions < V1.1), TIA Project-Server V16 (All versions), TIA Project-Server V17 (All versions < V17 Update 6). Affected applications contain an untrusted search path vulnerability that could allow an attacker to escalate privileges, when tricking a legitimate user to start the service from an attacker controlled path.
A vulnerability has been identified in SiPass integrated AC5102 (ACC-G2) (All versions < V2.85.44), SiPass integrated ACC-AP (All versions < V2.85.43). Affected devices improperly sanitize user input on the telnet command line interface. This could allow an authenticated user to escalate privileges by injecting arbitrary commands that are executed with root privileges.
The APDFL.dll contains a memory corruption vulnerability while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process.
The APDFL.dll contains an out-of-bounds write past the fixed-length heap-based buffer while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process.
The APDFL.dll contains a stack-based buffer overflow vulnerability that could be triggered while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge (All versions < V2023 MP1). The DOCMGMT.DLL contains a memory corruption vulnerability that could be triggered while parsing files in different file formats such as PAR, ASM, DFT. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT Open (All versions < V11.1.1.0), JT Utilities (All versions < V13.1.1.0), Solid Edge (All versions < V2023). The Jt1001.dll contains a memory corruption vulnerability while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-19078)
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 1). An authenticated remote attacker with access to the Web Based Management (443/tcp) of the affected product, could potentially inject commands into the dhcpd configuration of the affected product. An attacker might leverage this to trigger remote code execution on the affected component.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 1). An authenticated remote attacker with access to the Web Based Management (443/tcp) of the affected product as well as with access to the SFTP server of the affected product (22/tcp), could potentially read and write arbitrary files from and to the device's file system. An attacker might leverage this to trigger remote code execution on the affected component.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 1). An authenticated remote attacker with access to the Web Based Management (443/tcp) of the affected product, could potentially read and write arbitrary files from and to the device's file system. An attacker might leverage this to trigger remote code execution on the affected component.
A vulnerability has been identified in Automation License Manager V5 (All versions), Automation License Manager V6 (All versions < V6.0 SP9 Upd4), TeleControl Server Basic V3 (All versions < V3.1.2). The affected component does not correctly validate the root path on folder related operations, allowing to modify files and folders outside the intended root directory. This could allow an unauthenticated remote attacker to execute file operations of files outside of the specified root folder. Chained with CVE-2022-43513 this could allow Remote Code Execution.
A vulnerability has been identified in Automation License Manager V5 (All versions), Automation License Manager V6 (All versions < V6.0 SP9 Upd4), TeleControl Server Basic V3 (All versions < V3.1.2). The affected components allow to rename license files with user chosen input without authentication. This could allow an unauthenticated remote attacker to rename and move files as SYSTEM user.
Affected devices do not contain an Immutable Root of Trust in Hardware. With this the integrity of the code executed on the device can not be validated during load-time. An attacker with physical access to the device could use this to replace the boot image of the device and execute arbitrary code.
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.264), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted X_B files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19384)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.264), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds write past the end of an allocated structure while parsing specially crafted X_B files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19383)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.264), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds write past the end of an allocated structure while parsing specially crafted X_B files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19079)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.264), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds write past the end of an allocated structure while parsing specially crafted X_B files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19071)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.264), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Solid Edge SE2022 (All versions < V222.0MP12), Solid Edge SE2022 (All versions), Solid Edge SE2023 (All versions < V223.0Update2). The affected applications contain an out of bounds write past the end of an allocated structure while parsing specially crafted X_B files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-19070)
A vulnerability has been identified in Polarion ALM (All versions < V2304.0). The affected application contains a Host header injection vulnerability that could allow an attacker to spoof a Host header information and redirect users to malicious websites.
A vulnerability has been identified in SCALANCE SC622-2C (6GK5622-2GS00-2AC2) (All versions < V2.3), SCALANCE SC622-2C (6GK5622-2GS00-2AC2) (All versions >= V2.3 < V3.0), SCALANCE SC626-2C (6GK5626-2GS00-2AC2) (All versions < V2.3), SCALANCE SC626-2C (6GK5626-2GS00-2AC2) (All versions >= V2.3 < V3.0), SCALANCE SC632-2C (6GK5632-2GS00-2AC2) (All versions < V2.3), SCALANCE SC632-2C (6GK5632-2GS00-2AC2) (All versions >= V2.3 < V3.0), SCALANCE SC636-2C (6GK5636-2GS00-2AC2) (All versions < V2.3), SCALANCE SC636-2C (6GK5636-2GS00-2AC2) (All versions >= V2.3 < V3.0), SCALANCE SC642-2C (6GK5642-2GS00-2AC2) (All versions < V2.3), SCALANCE SC642-2C (6GK5642-2GS00-2AC2) (All versions >= V2.3 < V3.0), SCALANCE SC646-2C (6GK5646-2GS00-2AC2) (All versions < V2.3), SCALANCE SC646-2C (6GK5646-2GS00-2AC2) (All versions >= V2.3 < V3.0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions < V2.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions < V2.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions < V2.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions < V2.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions < V2.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions < V2.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions < V2.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions < V2.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions < V2.0.0). Affected devices do not properly process CLI commands after a user forcefully quitted the SSH connection. This could allow an authenticated attacker to make the CLI via SSH or serial interface irresponsive.
Affected devices do not check the TFTP blocksize correctly. This could allow an authenticated attacker to read from an uninitialized buffer that potentially contains previously allocated data.
Affected devices store the CLI user passwords encrypted in flash memory. Attackers with physical access to the device could retrieve the file and decrypt the CLI user passwords.
Affected devices use a weak encryption scheme to encrypt the debug zip file. This could allow an authenticated attacker to decrypt the contents of the file and retrieve debug information about the system.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). A low privilege authenticated attacker with network access to the integrated web server could download sensitive information from the device containing user account credentials.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.9), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.5), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CCITT_G4Decode.dll contains an out of bounds read vulnerability when parsing a RAS file. An attacker can leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-19056)
A vulnerability has been identified in SIPROTEC 5 6MD84 (CP300) (All versions < V9.50), SIPROTEC 5 6MD85 (CP200) (All versions), SIPROTEC 5 6MD85 (CP300) (All versions < V9.50), SIPROTEC 5 6MD86 (CP200) (All versions), SIPROTEC 5 6MD86 (CP300) (All versions < V9.50), SIPROTEC 5 6MD89 (CP300) (All versions < V9.64), SIPROTEC 5 6MU85 (CP300) (All versions < V9.50), SIPROTEC 5 7KE85 (CP200) (All versions), SIPROTEC 5 7KE85 (CP300) (All versions < V9.64), SIPROTEC 5 7SA82 (CP100) (All versions), SIPROTEC 5 7SA82 (CP150) (All versions < V9.50), SIPROTEC 5 7SA84 (CP200) (All versions), SIPROTEC 5 7SA86 (CP200) (All versions), SIPROTEC 5 7SA86 (CP300) (All versions < V9.50), SIPROTEC 5 7SA87 (CP200) (All versions), SIPROTEC 5 7SA87 (CP300) (All versions < V9.50), SIPROTEC 5 7SD82 (CP100) (All versions), SIPROTEC 5 7SD82 (CP150) (All versions < V9.50), SIPROTEC 5 7SD84 (CP200) (All versions), SIPROTEC 5 7SD86 (CP200) (All versions), SIPROTEC 5 7SD86 (CP300) (All versions < V9.50), SIPROTEC 5 7SD87 (CP200) (All versions), SIPROTEC 5 7SD87 (CP300) (All versions < V9.50), SIPROTEC 5 7SJ81 (CP100) (All versions < V8.89), SIPROTEC 5 7SJ81 (CP150) (All versions < V9.50), SIPROTEC 5 7SJ82 (CP100) (All versions < V8.89), SIPROTEC 5 7SJ82 (CP150) (All versions < V9.50), SIPROTEC 5 7SJ85 (CP200) (All versions), SIPROTEC 5 7SJ85 (CP300) (All versions < V9.50), SIPROTEC 5 7SJ86 (CP200) (All versions), SIPROTEC 5 7SJ86 (CP300) (All versions < V9.50), SIPROTEC 5 7SK82 (CP100) (All versions < V8.89), SIPROTEC 5 7SK82 (CP150) (All versions < V9.50), SIPROTEC 5 7SK85 (CP200) (All versions), SIPROTEC 5 7SK85 (CP300) (All versions < V9.50), SIPROTEC 5 7SL82 (CP100) (All versions), SIPROTEC 5 7SL82 (CP150) (All versions < V9.50), SIPROTEC 5 7SL86 (CP200) (All versions), SIPROTEC 5 7SL86 (CP300) (All versions < V9.50), SIPROTEC 5 7SL87 (CP200) (All versions), SIPROTEC 5 7SL87 (CP300) (All versions < V9.50), SIPROTEC 5 7SS85 (CP200) (All versions), SIPROTEC 5 7SS85 (CP300) (All versions < V9.50), SIPROTEC 5 7ST85 (CP200) (All versions), SIPROTEC 5 7ST85 (CP300) (All versions < V9.64), SIPROTEC 5 7ST86 (CP300) (All versions < V9.64), SIPROTEC 5 7SX82 (CP150) (All versions < V9.50), SIPROTEC 5 7SX85 (CP300) (All versions < V9.50), SIPROTEC 5 7UM85 (CP300) (All versions < V9.50), SIPROTEC 5 7UT82 (CP100) (All versions), SIPROTEC 5 7UT82 (CP150) (All versions < V9.50), SIPROTEC 5 7UT85 (CP200) (All versions), SIPROTEC 5 7UT85 (CP300) (All versions < V9.50), SIPROTEC 5 7UT86 (CP200) (All versions), SIPROTEC 5 7UT86 (CP300) (All versions < V9.50), SIPROTEC 5 7UT87 (CP200) (All versions), SIPROTEC 5 7UT87 (CP300) (All versions < V9.50), SIPROTEC 5 7VE85 (CP300) (All versions < V9.50), SIPROTEC 5 7VK87 (CP200) (All versions), SIPROTEC 5 7VK87 (CP300) (All versions < V9.50), SIPROTEC 5 7VU85 (CP300) (All versions < V9.50), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions < V8.89 installed on CP100 devices), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions < V9.50 installed on CP150 and CP300 devices), SIPROTEC 5 Communication Module ETH-BA-2EL (All versions installed on CP200 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions < V8.89 installed on CP100 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions < V9.50 installed on CP150 and CP300 devices), SIPROTEC 5 Communication Module ETH-BB-2FO (All versions installed on CP200 devices), SIPROTEC 5 Communication Module ETH-BD-2FO (All versions < V9.50), SIPROTEC 5 Compact 7SX800 (CP050) (All versions < V9.50). Affected devices do not properly restrict secure client-initiated renegotiations within the SSL and TLS protocols. This could allow an attacker to create a denial of service condition on the ports 443/tcp and 4443/tcp for the duration of the attack.
A vulnerability has been identified in SIMATIC WinCC OA V3.15 (All versions < V3.15 P038), SIMATIC WinCC OA V3.16 (All versions < V3.16 P035), SIMATIC WinCC OA V3.17 (All versions < V3.17 P024), SIMATIC WinCC OA V3.18 (All versions < V3.18 P014). The affected component allows to inject custom arguments to the Ultralight Client backend application under certain circumstances. This could allow an authenticated remote attacker to inject arbitrary parameters when starting the client via the web interface (e.g., open attacker chosen panels with the attacker's credentials or start a Ctrl script).
A vulnerability has been identified in PLM Help Server V4.2 (All versions). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious javascript code by tricking users into accessing a malicious link.
A vulnerability has been identified in SICAM PAS/PQS (All versions < V7.0). Affected software transmits the database credentials for the inbuilt SQL server in cleartext. In combination with the by default enabled xp_cmdshell feature unauthenticated remote attackers could execute custom OS commands. At the time of assigning the CVE, the affected firmware version of the component has already been superseded by succeeding mainline versions.
A vulnerability has been identified in SICAM PAS/PQS (All versions < V7.0), SICAM PAS/PQS (All versions >= 7.0 < V8.06). Affected software does not properly validate the input for a certain parameter in the s7ontcp.dll. This could allow an unauthenticated remote attacker to send messages and create a denial of service condition as the application crashes. At the time of assigning the CVE, the affected firmware version of the component has already been superseded by succeeding mainline versions.
A vulnerability has been identified in SICAM PAS/PQS (All versions < V7.0). Affected software does not properly secure a folder containing library files. This could allow an attacker to place a custom malicious DLL in this folder which is then run with SYSTEM rights when a service is started that requires this DLL. At the time of assigning the CVE, the affected firmware version of the component has already been superseded by succeeding mainline versions.
A vulnerability has been identified in Simcenter STAR-CCM+ (All versions < V2306). The affected application improperly assigns file permissions to installation folders. This could allow a local attacker with an unprivileged account to override or modify the service executables and subsequently gain elevated privileges.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains stack exhaustion vulnerability when parsing a CGM file. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains divide by zero vulnerability when parsing a CGM file. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains an out of bounds write vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains a use-after-free vulnerability that could be triggered while parsing specially crafted CGM files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains an out of bounds read vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains an out of bounds write vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains an out of bounds read vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains an out of bounds read vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.6), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.4), Teamcenter Visualization V14.1 (All versions < V14.1.0.6). The CGM_NIST_Loader.dll contains a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial of service in the device.
Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial of service in the device.
Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial of service in the device.
Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial of service in the device.
The llhttp parser in the http module in Node v18.7.0 does not correctly handle header fields that are not terminated with CLRF. This may result in HTTP Request Smuggling.
A weak randomness in WebCrypto keygen vulnerability exists in Node.js 18 due to a change with EntropySource() in SecretKeyGenTraits::DoKeyGen() in src/crypto/crypto_keygen.cc. There are two problems with this: 1) It does not check the return value, it assumes EntropySource() always succeeds, but it can (and sometimes will) fail. 2) The random data returned byEntropySource() may not be cryptographically strong and therefore not suitable as keying material.
A vulnerability has been identified in SIPLUS TIM 1531 IRC (6AG1543-1MX00-7XE0) (All versions < V2.4.8), TIM 1531 IRC (6GK7543-1MX00-0XE0) (All versions < V2.4.8). Casting an internal value could lead to floating point exception under certain circumstances. This could allow an attacker to cause a denial of service condition on affected devices.
A vulnerability has been identified in QMS Automotive (All versions < V12.39), QMS Automotive (All versions < V12.39). User credentials are stored in plaintext in the database without any hashing mechanism. This could allow an attacker to gain access to credentials and impersonate other users.
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10). Affected devices do not properly validate the EndTime-parameter in requests to the web interface on port 443/tcp. This could allow an authenticated remote attacker to crash the device (followed by an automatic reboot) or to execute arbitrary code on the device.
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10). Affected devices do not properly validate the RecordType-parameter in requests to the web interface on port 443/tcp. This could allow an authenticated remote attacker to crash the device (followed by an automatic reboot) or to execute arbitrary code on the device.
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10). Affected devices do not properly validate the Language-parameter in requests to the web interface on port 443/tcp. This could allow an authenticated remote attacker to crash the device (followed by an automatic reboot) or to execute arbitrary code on the device.
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50), POWER METER SICAM Q100 (All versions < V2.50). Affected devices do not renew the session cookie after login/logout and also accept user defined session cookies. An attacker could overwrite the stored session cookie of a user. After the victim logged in, the attacker is given access to the user's account through the activated session.
A vulnerability has been identified in Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.170), Simcenter Femap (All versions < V2023.1). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17854)
A vulnerability has been identified in JT2Go (All versions < V14.1.0.4), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.7), Teamcenter Visualization V14.0 (All versions < V14.0.0.3), Teamcenter Visualization V14.1 (All versions < V14.1.0.4). The affected application contains a stack-based buffer overflow vulnerability that could be triggered while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.4), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.7), Teamcenter Visualization V14.0 (All versions < V14.0.0.3), Teamcenter Visualization V14.1 (All versions < V14.1.0.4). The affected applications contain a use-after-free vulnerability that could be triggered while parsing specially crafted CGM files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.4), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.7), Teamcenter Visualization V14.0 (All versions < V14.0.0.3), Teamcenter Visualization V14.1 (All versions < V14.1.0.4). The affected products contain an out of bounds read vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.4), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.7), Teamcenter Visualization V14.0 (All versions < V14.0.0.3), Teamcenter Visualization V14.1 (All versions < V14.1.0.4). The affected products contain an out of bounds read vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V14.1.0.4), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.7), Teamcenter Visualization V14.0 (All versions < V14.0.0.3), Teamcenter Visualization V14.1 (All versions < V14.1.0.4). The affected products contain an out of bounds write vulnerability when parsing a CGM file. An attacker can leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.0 (All versions >= V34.0.252 < V34.0.254), Parasolid V34.1 (All versions < V34.1.242), Parasolid V34.1 (All versions >= V34.1.242 < V34.1.244), Parasolid V35.0 (All versions < V35.0.170), Parasolid V35.0 (All versions >= V35.0.170 < V35.0.184), Simcenter Femap (All versions < V2023.1). The affected application contains an out of bounds read past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17745)
A vulnerability has been identified in JT2Go (All versions < V14.1.0.4), Teamcenter Visualization V13.2 (All versions < V13.2.0.12), Teamcenter Visualization V13.3 (All versions < V13.3.0.7), Teamcenter Visualization V13.3 (All versions >= V13.3.0.7 < V13.3.0.8), Teamcenter Visualization V14.0 (All versions < V14.0.0.3), Teamcenter Visualization V14.1 (All versions < V14.1.0.4). The affected application is vulnerable to fixed-length heap-based buffer while parsing specially crafted TIF files. An attacker could leverage this vulnerability to execute code in the context of the current process.
The login endpoint /FormLogin in affected web services does not apply proper origin checking. This could allow authenticated remote attackers to track the activities of other users via a login cross-site request forgery attack.
A vulnerability has been identified in Siveillance Video Mobile Server V2022 R2 (All versions < V22.2a (80)). The mobile server component of affected applications improperly handles the log in for Active Directory accounts that are part of Administrators group. This could allow an unauthenticated remote attacker to access the application without a valid account.
The APDFL.dll in Siemens JT2Go prior to V13.3.0.5 and Siemens Teamcenter Visualization prior to V14.0.0.2 contains an out of bounds write past the fixed-length heap-based buffer while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JTTK (All versions < V11.1.1.0), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The JTTK library is vulnerable to an uninitialized pointer reference vulnerability while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-16973)
A vulnerability has been identified in SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10). Affected devices do not properly validate the parameter of a specific GET request. This could allow an unauthenticated attacker to set the device to a denial of service state or to control the program counter and, thus, execute arbitrary code on the device.
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < V5.5.0), SCALANCE X201-3P IRT (All versions < V5.5.0), SCALANCE X201-3P IRT PRO (All versions < V5.5.0), SCALANCE X202-2IRT (All versions < V5.5.0), SCALANCE X202-2P IRT (All versions < V5.5.0), SCALANCE X202-2P IRT PRO (All versions < V5.5.0), SCALANCE X204-2 (All versions < V5.2.5), SCALANCE X204-2FM (All versions < V5.2.5), SCALANCE X204-2LD (All versions < V5.2.5), SCALANCE X204-2LD TS (All versions < V5.2.5), SCALANCE X204-2TS (All versions < V5.2.5), SCALANCE X204IRT (All versions < V5.5.0), SCALANCE X204IRT PRO (All versions < V5.5.0), SCALANCE X206-1 (All versions < V5.2.5), SCALANCE X206-1LD (All versions < V5.2.5), SCALANCE X208 (All versions < V5.2.5), SCALANCE X208PRO (All versions < V5.2.5), SCALANCE X212-2 (All versions < V5.2.5), SCALANCE X212-2LD (All versions < V5.2.5), SCALANCE X216 (All versions < V5.2.5), SCALANCE X224 (All versions < V5.2.5), SCALANCE XF201-3P IRT (All versions < V5.5.0), SCALANCE XF202-2P IRT (All versions < V5.5.0), SCALANCE XF204 (All versions < V5.2.5), SCALANCE XF204-2 (All versions < V5.2.5), SCALANCE XF204-2BA IRT (All versions < V5.5.0), SCALANCE XF204IRT (All versions < V5.5.0), SCALANCE XF206-1 (All versions < V5.2.5), SCALANCE XF208 (All versions < V5.2.5), SIPLUS NET SCALANCE X202-2P IRT (All versions < V5.5.0). There is a cross-site scripting vulnerability on the affected devices, that if used by a threat actor, it could result in session hijacking.
A vulnerability has been identified in SIMATIC HMI Comfort Panels (incl. SIPLUS variants) (All versions < V17 Update 4), SIMATIC HMI KTP Mobile Panels (All versions < V17 Update 4), SIMATIC HMI KTP1200 Basic (All versions < V17 Update 5), SIMATIC HMI KTP400 Basic (All versions < V17 Update 5), SIMATIC HMI KTP700 Basic (All versions < V17 Update 5), SIMATIC HMI KTP900 Basic (All versions < V17 Update 5), SIPLUS HMI KTP1200 BASIC (All versions < V17 Update 5), SIPLUS HMI KTP400 BASIC (All versions < V17 Update 5), SIPLUS HMI KTP700 BASIC (All versions < V17 Update 5), SIPLUS HMI KTP900 BASIC (All versions < V17 Update 5). Affected devices do not properly validate input sent to certain services over TCP. This could allow an unauthenticated remote attacker to cause a permanent denial of service condition (requiring a device reboot) by sending specially crafted TCP packets.
A vulnerability has been identified in SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P850 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10), SICAM P855 (All versions < V3.10). Affected devices accept user defined session cookies and do not renew the session cookie after login/logout. This could allow an attacker to take over another user's session after login.
A vulnerability has been identified in Industrial Edge Management (All versions < V1.5.1). The affected software does not properly validate the server certificate when initiating a TLS connection. This could allow an attacker to spoof a trusted entity by interfering in the communication path between the client and the intended server.
A vulnerability has been identified in SIMATIC Drive Controller family (All versions < V2.9.2), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants) (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V21.9), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions < V4.5.0), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V2.9.2), SIMATIC S7-1500 Software Controller (All versions < V21.9), SIMATIC S7-PLCSIM Advanced (All versions < V4.0), SINUMERIK MC (All versions < V6.21), SINUMERIK ONE (All versions < V6.21). Affected products protect the built-in global private key in a way that cannot be considered sufficient any longer. The key is used for the legacy protection of confidential configuration data and the legacy PG/PC and HMI communication. This could allow attackers to discover the private key of a CPU product family by an offline attack against a single CPU of the family. Attackers could then use this knowledge to extract confidential configuration data from projects that are protected by that key or to perform attacks against legacy PG/PC and HMI communication.
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.7), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.21), APOGEE PXC Modular (BACnet) (All versions < V3.5.7), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.21), Desigo PXC00-E.D (All versions >= V2.3), Desigo PXC00-U (All versions >= V2.3), Desigo PXC001-E.D (All versions >= V2.3), Desigo PXC100-E.D (All versions >= V2.3), Desigo PXC12-E.D (All versions >= V2.3), Desigo PXC128-U (All versions >= V2.3), Desigo PXC200-E.D (All versions >= V2.3), Desigo PXC22-E.D (All versions >= V2.3), Desigo PXC22.1-E.D (All versions >= V2.3), Desigo PXC36.1-E.D (All versions >= V2.3), Desigo PXC50-E.D (All versions >= V2.3), Desigo PXC64-U (All versions >= V2.3), Desigo PXM20-E (All versions >= V2.3), Nucleus NET for Nucleus PLUS V1 (All versions < V5.2a), Nucleus NET for Nucleus PLUS V2 (All versions < V5.4), Nucleus ReadyStart V3 V2012 (All versions < V2012.08.1), Nucleus ReadyStart V3 V2017 (All versions < V2017.02.4), Nucleus Source Code (All versions including affected FTP server), TALON TC Compact (BACnet) (All versions < V3.5.7), TALON TC Modular (BACnet) (All versions < V3.5.7). The FTP server does not properly release memory resources that were reserved for incomplete connection attempts by FTP clients. This could allow a remote attacker to generate a denial of service condition on devices that incorporate a vulnerable version of the FTP server.
A vulnerability has been identified in Solid Edge (All Versions < SE2022MP9). The affected application contains an out of bounds write past the fixed-length heap-based buffer while parsing specially crafted DWG files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17627)
A vulnerability has been identified in LOGO! 12/24RCE (6ED1052-1MD08-0BA1) (All versions), LOGO! 12/24RCEo (6ED1052-2MD08-0BA1) (All versions), LOGO! 230RCE (6ED1052-1FB08-0BA1) (All versions), LOGO! 230RCEo (6ED1052-2FB08-0BA1) (All versions), LOGO! 24CE (6ED1052-1CC08-0BA1) (All versions), LOGO! 24CEo (6ED1052-2CC08-0BA1) (All versions), LOGO! 24RCE (6ED1052-1HB08-0BA1) (All versions), LOGO! 24RCEo (6ED1052-2HB08-0BA1) (All versions), SIPLUS LOGO! 12/24RCE (6AG1052-1MD08-7BA1) (All versions), SIPLUS LOGO! 12/24RCEo (6AG1052-2MD08-7BA1) (All versions), SIPLUS LOGO! 230RCE (6AG1052-1FB08-7BA1) (All versions), SIPLUS LOGO! 230RCEo (6AG1052-2FB08-7BA1) (All versions), SIPLUS LOGO! 24CE (6AG1052-1CC08-7BA1) (All versions), SIPLUS LOGO! 24CEo (6AG1052-2CC08-7BA1) (All versions), SIPLUS LOGO! 24RCE (6AG1052-1HB08-7BA1) (All versions), SIPLUS LOGO! 24RCEo (6AG1052-2HB08-7BA1) (All versions). Affected devices do not properly validate an offset value which can be defined in TCP packets when calling a method. This could allow an attacker to retrieve parts of the content of the memory.
A vulnerability has been identified in LOGO! 12/24RCE (6ED1052-1MD08-0BA1) (All versions), LOGO! 12/24RCE (6ED1052-1MD08-0BA2) (All versions), LOGO! 12/24RCEo (6ED1052-2MD08-0BA1) (All versions), LOGO! 12/24RCEo (6ED1052-2MD08-0BA2) (All versions), LOGO! 230RCE (6ED1052-1FB08-0BA1) (All versions), LOGO! 230RCE (6ED1052-1FB08-0BA2) (All versions), LOGO! 230RCEo (6ED1052-2FB08-0BA1) (All versions), LOGO! 230RCEo (6ED1052-2FB08-0BA2) (All versions), LOGO! 24CE (6ED1052-1CC08-0BA1) (All versions), LOGO! 24CE (6ED1052-1CC08-0BA2) (All versions), LOGO! 24CEo (6ED1052-2CC08-0BA1) (All versions), LOGO! 24CEo (6ED1052-2CC08-0BA2) (All versions), LOGO! 24RCE (6ED1052-1HB08-0BA1) (All versions), LOGO! 24RCE (6ED1052-1HB08-0BA2) (All versions), LOGO! 24RCEo (6ED1052-2HB08-0BA1) (All versions), LOGO! 24RCEo (6ED1052-2HB08-0BA2) (All versions), SIPLUS LOGO! 12/24RCE (6AG1052-1MD08-7BA1) (All versions), SIPLUS LOGO! 12/24RCE (6AG1052-1MD08-7BA2) (All versions), SIPLUS LOGO! 12/24RCEo (6AG1052-2MD08-7BA1) (All versions), SIPLUS LOGO! 12/24RCEo (6AG1052-2MD08-7BA2) (All versions), SIPLUS LOGO! 230RCE (6AG1052-1FB08-7BA1) (All versions), SIPLUS LOGO! 230RCE (6AG1052-1FB08-7BA2) (All versions), SIPLUS LOGO! 230RCEo (6AG1052-2FB08-7BA1) (All versions), SIPLUS LOGO! 230RCEo (6AG1052-2FB08-7BA2) (All versions), SIPLUS LOGO! 24CE (6AG1052-1CC08-7BA1) (All versions), SIPLUS LOGO! 24CE (6AG1052-1CC08-7BA2) (All versions), SIPLUS LOGO! 24CEo (6AG1052-2CC08-7BA1) (All versions), SIPLUS LOGO! 24CEo (6AG1052-2CC08-7BA2) (All versions), SIPLUS LOGO! 24RCE (6AG1052-1HB08-7BA1) (All versions), SIPLUS LOGO! 24RCE (6AG1052-1HB08-7BA2) (All versions), SIPLUS LOGO! 24RCEo (6AG1052-2HB08-7BA1) (All versions), SIPLUS LOGO! 24RCEo (6AG1052-2HB08-7BA2) (All versions). Affected devices do not conduct certain validations when interacting with them. This could allow an unauthenticated remote attacker to manipulate the devices IP address, which means the device would not be reachable and could only be recovered by power cycling the device.
A vulnerability has been identified in LOGO! 12/24RCE (6ED1052-1MD08-0BA1) (All versions), LOGO! 12/24RCEo (6ED1052-2MD08-0BA1) (All versions), LOGO! 230RCE (6ED1052-1FB08-0BA1) (All versions), LOGO! 230RCEo (6ED1052-2FB08-0BA1) (All versions), LOGO! 24CE (6ED1052-1CC08-0BA1) (All versions), LOGO! 24CEo (6ED1052-2CC08-0BA1) (All versions), LOGO! 24RCE (6ED1052-1HB08-0BA1) (All versions), LOGO! 24RCEo (6ED1052-2HB08-0BA1) (All versions), SIPLUS LOGO! 12/24RCE (6AG1052-1MD08-7BA1) (All versions), SIPLUS LOGO! 12/24RCEo (6AG1052-2MD08-7BA1) (All versions), SIPLUS LOGO! 230RCE (6AG1052-1FB08-7BA1) (All versions), SIPLUS LOGO! 230RCEo (6AG1052-2FB08-7BA1) (All versions), SIPLUS LOGO! 24CE (6AG1052-1CC08-7BA1) (All versions), SIPLUS LOGO! 24CEo (6AG1052-2CC08-7BA1) (All versions), SIPLUS LOGO! 24RCE (6AG1052-1HB08-7BA1) (All versions), SIPLUS LOGO! 24RCEo (6AG1052-2HB08-7BA1) (All versions). Affected devices do not properly validate the structure of TCP packets in several methods. This could allow an attacker to cause buffer overflows, get control over the instruction counter and run custom code.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Affected devices load firmware updates without checking the authenticity. Furthermore the integrity of the unencrypted firmware is only verified by a non-cryptographic method. This could allow an attacker to manipulate a firmware update and flash it to the device.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2) (All versions < V7.1.2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2) (All versions < V7.1.2), SCALANCE M804PB (6GK5804-0AP00-2AA2) (All versions < V7.1.2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2) (All versions < V7.1.2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2) (All versions < V7.1.2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2) (All versions < V7.1.2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2) (All versions < V7.1.2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2) (All versions < V7.1.2), SCALANCE M874-2 (6GK5874-2AA00-2AA2) (All versions < V7.1.2), SCALANCE M874-3 (6GK5874-3AA00-2AA2) (All versions < V7.1.2), SCALANCE M876-3 (6GK5876-3AA02-2BA2) (All versions < V7.1.2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2) (All versions < V7.1.2), SCALANCE M876-4 (6GK5876-4AA10-2BA2) (All versions < V7.1.2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2) (All versions < V7.1.2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2) (All versions < V7.1.2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1) (All versions < V7.1.2), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1) (All versions < V7.1.2), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1) (All versions < V7.1.2), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2) (All versions < V7.1.2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2) (All versions < V7.1.2), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0) (All versions >= V1.1.0 < V3.0.0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0) (All versions >= V1.1.0 < V3.0.0). Affected devices with TCP Event service enabled do not properly handle malformed packets. This could allow an unauthenticated remote attacker to cause a denial of service condition and reboot the device thus possibly affecting other network resources.
Affected devices do not properly authorize the change password function of the web interface. This could allow low privileged users to escalate their privileges.
A vulnerability in the Aruba InstantOS and ArubaOS 10 web management interface could allow a remote attacker to conduct a reflected cross-site scripting (XSS) attack against a user of the interface. A successful exploit could allow an attacker to execute arbitrary script code in a victim’s browser in the context of the affected interface of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InstantOS that address this security vulnerability.
An unauthenticated Denial of Service (DoS) vulnerability exists in the handling of certain SSID strings by Aruba InstantOS and ArubaOS 10. Successful exploitation of this vulnerability results in the ability to interrupt the normal operation of the affected AP of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InstantOS that address this security vulnerability.
An unauthenticated Denial of Service (DoS) vulnerability exists in the handling of certain SSID strings by Aruba InstantOS and ArubaOS 10. Successful exploitation of this vulnerability results in the ability to interrupt the normal operation of the affected AP of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InstantOS that address this security vulnerability.
An authenticated command injection vulnerability exists in the Aruba InstantOS and ArubaOS 10 command line interface. Successful exploitation of this vulnerability results in the ability to execute arbitrary commands as a privileged user on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InstantOS that address this security vulnerability.
A vulnerability in the Aruba InstantOS and ArubaOS 10 web management interface could allow an unauthenticated remote attacker to conduct a stored cross-site scripting (XSS) attack against a user of the interface. A successful exploit could allow an attacker to execute arbitrary script code in a victim’s browser in the context of the affected interface of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address this security vulnerability.
Unauthenticated buffer overflow vulnerabilities exist within the Aruba InstantOS and ArubaOS 10 web management interface. Successful exploitation results in the execution of arbitrary commands on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
Unauthenticated buffer overflow vulnerabilities exist within the Aruba InstantOS and ArubaOS 10 web management interface. Successful exploitation results in the execution of arbitrary commands on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba Networks AP management protocol) UDP port (8211). Successful exploitation of these vulnerabilities results in the ability to execute arbitrary code as a privileged user on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba Networks AP management protocol) UDP port (8211). Successful exploitation of these vulnerabilities results in the ability to execute arbitrary code as a privileged user on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba Networks AP management protocol) UDP port (8211). Successful exploitation of these vulnerabilities results in the ability to execute arbitrary code as a privileged user on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba Networks AP management protocol) UDP port (8211). Successful exploitation of these vulnerabilities results in the ability to execute arbitrary code as a privileged user on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
There are buffer overflow vulnerabilities in multiple underlying services that could lead to unauthenticated remote code execution by sending specially crafted packets destined to the PAPI (Aruba Networks AP management protocol) UDP port (8211). Successful exploitation of these vulnerabilities results in the ability to execute arbitrary code as a privileged user on the underlying operating system of Aruba InstantOS 6.4.x: 6.4.4.8-4.2.4.20 and below; Aruba InstantOS 6.5.x: 6.5.4.23 and below; Aruba InstantOS 8.6.x: 8.6.0.18 and below; Aruba InstantOS 8.7.x: 8.7.1.9 and below; Aruba InstantOS 8.10.x: 8.10.0.1 and below; ArubaOS 10.3.x: 10.3.1.0 and below; Aruba has released upgrades for Aruba InnstantOS that address these security vulnerabilities.
Affected devices improperly handle partial HTTP requests which makes them vulnerable to slowloris attacks. This could allow a remote attacker to create a denial of service condition that persists until the attack ends.
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to out of bounds read past the end of an allocated buffer when parsing X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-18196)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-18192)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-18188)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to out of bounds read past the end of an allocated buffer when parsing X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-18187)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17740)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17736)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17735)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17733)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17513)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted X_T files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-17506)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to uninitialized pointer access while parsing specially crafted X_T files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-17502)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to out of bounds read past the end of an allocated buffer when parsing X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17496)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17494)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17493)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V33.1 (All versions >= V33.1.262 < V33.1.263), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Parasolid V35.0 (All versions >= V35.0.161 < V35.0.164), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17485)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to out of bounds read past the end of an allocated buffer when parsing X_T files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-17296)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17292)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17289)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17284)
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.262), Parasolid V34.0 (All versions < V34.0.252), Parasolid V34.1 (All versions < V34.1.242), Parasolid V35.0 (All versions < V35.0.161), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application is vulnerable to out of bounds read past the end of an allocated buffer when parsing X_T files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-17276)
A vulnerability has been identified in CoreShield One-Way Gateway (OWG) Software (All versions < V2.2). The default installation sets insecure file permissions that could allow a local attacker to escalate privileges to local administrator.
Affected devices do not properly sanitize data introduced by an user when rendering the web interface. This could allow an authenticated remote attacker with administrative privileges to inject code and lead to a DOM-based XSS.
Affected devices do not properly handle the renegotiation of SSL/TLS parameters. This could allow an unauthenticated remote attacker to bypass the TCP brute force prevention and lead to a denial of service condition for the duration of the attack.
Affected devices do not properly sanitize an input field. This could allow an authenticated remote attacker with administrative privileges to inject code or spawn a system root shell.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.15), Teamcenter V13.0 (All versions < V13.0.0.10), Teamcenter V13.1 (All versions < V13.1.0.10), Teamcenter V13.2 (All versions < V13.2.0.9), Teamcenter V13.3 (All versions < V13.3.0.5), Teamcenter V14.0 (All versions < V14.0.0.2). File Server Cache service in Teamcenter is vulnerable to denial of service by entering infinite loops and using up CPU cycles. This could allow an attacker to cause denial of service condition.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.15), Teamcenter V13.0 (All versions < V13.0.0.10), Teamcenter V13.1 (All versions < V13.1.0.10), Teamcenter V13.2 (All versions < V13.2.0.9), Teamcenter V13.3 (All versions < V13.3.0.5), Teamcenter V14.0 (All versions < V14.0.0.2). File Server Cache service in Teamcenter consist of a functionality that is vulnerable to command injection. This could potentially allow an attacker to perform remote code execution.
A vulnerability has been identified in Simcenter STAR-CCM+ (All versions only if the Power-on-Demand public license server is used). Affected applications expose user, host and display name of users, when the public license server is used. This could allow an attacker to retrieve this information.
A vulnerability has been identified in CP-8000 MASTER MODULE WITH I/O -25/+70°C (All versions), CP-8000 MASTER MODULE WITH I/O -40/+70°C (All versions), CP-8021 MASTER MODULE (All versions), CP-8022 MASTER MODULE WITH GPRS (All versions). The component allows to activate a web server module which provides unauthenticated access to its web pages. This could allow an attacker to retrieve debug-level information from the component such as internal network topology or connected systems.
A cryptographic vulnerability exists on Node.js on linux in versions of 18.x prior to 18.40.0 which allowed a default path for openssl.cnf that might be accessible under some circumstances to a non-admin user instead of /etc/ssl as was the case in versions prior to the upgrade to OpenSSL 3.
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS).
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS).
A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.20.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.
A vulnerability has been identified in RUGGEDCOM RM1224 LTE(4G) EU (6GK6108-4AM00-2BA2), RUGGEDCOM RM1224 LTE(4G) NAM (6GK6108-4AM00-2DA2), SCALANCE M804PB (6GK5804-0AP00-2AA2), SCALANCE M812-1 ADSL-Router (6GK5812-1AA00-2AA2), SCALANCE M812-1 ADSL-Router (6GK5812-1BA00-2AA2), SCALANCE M816-1 ADSL-Router (6GK5816-1AA00-2AA2), SCALANCE M816-1 ADSL-Router (6GK5816-1BA00-2AA2), SCALANCE M826-2 SHDSL-Router (6GK5826-2AB00-2AB2), SCALANCE M874-2 (6GK5874-2AA00-2AA2), SCALANCE M874-3 (6GK5874-3AA00-2AA2), SCALANCE M876-3 (6GK5876-3AA02-2BA2), SCALANCE M876-3 (ROK) (6GK5876-3AA02-2EA2), SCALANCE M876-4 (6GK5876-4AA10-2BA2), SCALANCE M876-4 (EU) (6GK5876-4AA00-2BA2), SCALANCE M876-4 (NAM) (6GK5876-4AA00-2DA2), SCALANCE MUM853-1 (EU) (6GK5853-2EA00-2DA1), SCALANCE MUM856-1 (EU) (6GK5856-2EA00-3DA1), SCALANCE MUM856-1 (RoW) (6GK5856-2EA00-3AA1), SCALANCE S615 EEC LAN-Router (6GK5615-0AA01-2AA2), SCALANCE S615 LAN-Router (6GK5615-0AA00-2AA2), SCALANCE SC622-2C (6GK5622-2GS00-2AC2), SCALANCE SC622-2C (6GK5622-2GS00-2AC2), SCALANCE SC626-2C (6GK5626-2GS00-2AC2), SCALANCE SC626-2C (6GK5626-2GS00-2AC2), SCALANCE SC632-2C (6GK5632-2GS00-2AC2), SCALANCE SC632-2C (6GK5632-2GS00-2AC2), SCALANCE SC636-2C (6GK5636-2GS00-2AC2), SCALANCE SC636-2C (6GK5636-2GS00-2AC2), SCALANCE SC642-2C (6GK5642-2GS00-2AC2), SCALANCE SC642-2C (6GK5642-2GS00-2AC2), SCALANCE SC646-2C (6GK5646-2GS00-2AC2), SCALANCE SC646-2C (6GK5646-2GS00-2AC2), SCALANCE WAB762-1 (6GK5762-1AJ00-6AA0), SCALANCE WAM763-1 (6GK5763-1AL00-7DA0), SCALANCE WAM763-1 (ME) (6GK5763-1AL00-7DC0), SCALANCE WAM763-1 (US) (6GK5763-1AL00-7DB0), SCALANCE WAM766-1 (6GK5766-1GE00-7DA0), SCALANCE WAM766-1 (ME) (6GK5766-1GE00-7DC0), SCALANCE WAM766-1 (US) (6GK5766-1GE00-7DB0), SCALANCE WAM766-1 EEC (6GK5766-1GE00-7TA0), SCALANCE WAM766-1 EEC (ME) (6GK5766-1GE00-7TC0), SCALANCE WAM766-1 EEC (US) (6GK5766-1GE00-7TB0), SCALANCE WUB762-1 (6GK5762-1AJ00-1AA0), SCALANCE WUB762-1 iFeatures (6GK5762-1AJ00-2AA0), SCALANCE WUM763-1 (6GK5763-1AL00-3AA0), SCALANCE WUM763-1 (6GK5763-1AL00-3DA0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3AB0), SCALANCE WUM763-1 (US) (6GK5763-1AL00-3DB0), SCALANCE WUM766-1 (6GK5766-1GE00-3DA0), SCALANCE WUM766-1 (ME) (6GK5766-1GE00-3DC0), SCALANCE WUM766-1 (USA) (6GK5766-1GE00-3DB0), SIMATIC CP 1242-7 V2 (6GK7242-7KX31-0XE0), SIMATIC CP 1243-1 (6GK7243-1BX30-0XE0), SIMATIC CP 1243-7 LTE EU (6GK7243-7KX30-0XE0), SIMATIC CP 1243-7 LTE US (6GK7243-7SX30-0XE0), SIMATIC CP 1243-8 IRC (6GK7243-8RX30-0XE0), SIMATIC CP 1542SP-1 IRC (6GK7542-6VX00-0XE0), SIMATIC CP 1543-1 (6GK7543-1AX00-0XE0), SIMATIC CP 1543SP-1 (6GK7543-6WX00-0XE0), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (6AG2542-6VX00-4XE0), SIPLUS ET 200SP CP 1543SP-1 ISEC (6AG1543-6WX00-7XE0), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (6AG2543-6WX00-4XE0), SIPLUS NET CP 1242-7 V2 (6AG1242-7KX31-7XE0), SIPLUS NET CP 1543-1 (6AG1543-1AX00-2XE0), SIPLUS S7-1200 CP 1243-1 (6AG1243-1BX30-2AX0), SIPLUS S7-1200 CP 1243-1 RAIL (6AG2243-1BX30-1XE0). By injecting code to specific configuration options for OpenVPN, an attacker could execute arbitrary code with elevated privileges.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (All versions < V3.3.46), SIMATIC CP 1243-1 (All versions < V3.3.46), SIMATIC CP 1243-7 LTE EU (All versions < V3.3.46), SIMATIC CP 1243-7 LTE US (All versions < V3.3.46), SIMATIC CP 1243-8 IRC (All versions < V3.3.46), SIMATIC CP 1542SP-1 IRC (All versions >= V2.0 < V2.2.28), SIMATIC CP 1543-1 (All versions < V3.0.22), SIMATIC CP 1543SP-1 (All versions >= V2.0 < V2.2.28), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (All versions >= V2.0 < V2.2.28), SIPLUS ET 200SP CP 1543SP-1 ISEC (All versions >= V2.0 < V2.2.28), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (All versions >= V2.0 < V2.2.28), SIPLUS NET CP 1242-7 V2 (All versions < V3.3.46), SIPLUS NET CP 1543-1 (All versions < V3.0.22), SIPLUS S7-1200 CP 1243-1 (All versions < V3.3.46), SIPLUS S7-1200 CP 1243-1 RAIL (All versions < V3.3.46). The application does not correctly escape some user provided fields during the authentication process. This could allow an attacker to inject custom commands and execute arbitrary code with elevated privileges.
A vulnerability has been identified in SIMATIC CP 1242-7 V2 (All versions < V3.3.46), SIMATIC CP 1243-1 (All versions < V3.3.46), SIMATIC CP 1243-7 LTE EU (All versions < V3.3.46), SIMATIC CP 1243-7 LTE US (All versions < V3.3.46), SIMATIC CP 1243-8 IRC (All versions < V3.3.46), SIMATIC CP 1542SP-1 IRC (All versions >= V2.0 < V2.2.28), SIMATIC CP 1543-1 (All versions < V3.0.22), SIMATIC CP 1543SP-1 (All versions >= V2.0 < V2.2.28), SIPLUS ET 200SP CP 1542SP-1 IRC TX RAIL (All versions >= V2.0 < V2.2.28), SIPLUS ET 200SP CP 1543SP-1 ISEC (All versions >= V2.0 < V2.2.28), SIPLUS ET 200SP CP 1543SP-1 ISEC TX RAIL (All versions >= V2.0 < V2.2.28), SIPLUS NET CP 1242-7 V2 (All versions < V3.3.46), SIPLUS NET CP 1543-1 (All versions < V3.0.22), SIPLUS S7-1200 CP 1243-1 (All versions < V3.3.46), SIPLUS S7-1200 CP 1243-1 RAIL (All versions < V3.3.46). The application lacks proper validation of user-supplied data when parsing specific messages. This could result in a heap-based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of device.
A vulnerability has been identified in Simcenter Femap (All versions < V2022.2). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted X_T files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-17293)
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. Affected devices are vulnerable to a web-based code injection attack via the console. An attacker could exploit this vulnerability to inject code into the web server and cause malicious behavior in legitimate users accessing certain web resources on the affected device.
A vulnerability has been identified in Parasolid V33.1 (All versions < V33.1.264), Parasolid V34.0 (All versions < V34.0.250), Parasolid V34.1 (All versions < V34.1.233), Simcenter Femap V2022.1 (All versions < V2022.1.3), Simcenter Femap V2022.2 (All versions < V2022.2.2). The affected application contains an out of bounds read past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15420)
A vulnerability has been identified in SICAM GridEdge Essential ARM (All versions), SICAM GridEdge Essential Intel (All versions < V2.7.3), SICAM GridEdge Essential with GDS ARM (All versions), SICAM GridEdge Essential with GDS Intel (All versions < V2.7.3). Affected software uses an improperly protected file to import SSH keys. Attackers with access to the filesystem of the host on which SICAM GridEdge runs, are able to inject a custom SSH key to that file.
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains a stack corruption vulnerability while parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-057, FG-VD-22-058, FG-VD-22-060)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains a stack corruption vulnerability while parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-055)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-054)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-053)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains a stack corruption vulnerability while parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-052, FG-VD-22-056)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-051)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-050)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-049)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-048)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to leak information in the context of the current process. (FG-VD-22-047)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to execute code in the context of the current process. (FG-VD-22-046)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to execute code in the context of the current process. (FG-VD-22-045)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to execute code in the context of the current process. (FG-VD-22-044)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-043)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-042)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-041)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-040)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-039)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted PCB files. This could allow an attacker to execute code in the context of the current process. (FG-VD-22-038)
A vulnerability has been identified in PADS Standard/Plus Viewer (All versions). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing PCB files. An attacker could leverage this vulnerability to execute code in the context of the current process. (FG-VD-22-037, FG-VD-22-059)
A vulnerability has been identified in EN100 Ethernet module DNP3 IP variant (All versions), EN100 Ethernet module IEC 104 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.40), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). Affected applications contains a memory corruption vulnerability while parsing specially crafted HTTP packets to /txtrace endpoint manupulating a specific argument. This could allow an attacker to crash the affected application leading to a denial of service condition
A vulnerability has been identified in CP-8000 MASTER MODULE WITH I/O -25/+70°C (All versions < CPC80 V16.30), CP-8000 MASTER MODULE WITH I/O -40/+70°C (All versions < CPC80 V16.30), CP-8021 MASTER MODULE (All versions < CPC80 V16.30), CP-8022 MASTER MODULE WITH GPRS (All versions < CPC80 V16.30). When using the HTTPS server under specific conditions, affected devices do not properly free resources. This could allow an unauthenticated remote attacker to put the device into a denial of service condition.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < 2.15.1), RUGGEDCOM ROX MX5000RE (All versions < 2.15.1), RUGGEDCOM ROX RX1400 (All versions < 2.15.1), RUGGEDCOM ROX RX1500 (All versions < 2.15.1), RUGGEDCOM ROX RX1501 (All versions < 2.15.1), RUGGEDCOM ROX RX1510 (All versions < 2.15.1), RUGGEDCOM ROX RX1511 (All versions < 2.15.1), RUGGEDCOM ROX RX1512 (All versions < 2.15.1), RUGGEDCOM ROX RX1524 (All versions < 2.15.1), RUGGEDCOM ROX RX1536 (All versions < 2.15.1), RUGGEDCOM ROX RX5000 (All versions < 2.15.1). Affected devices do not properly validate user input, making them susceptible to command injection. An attacker with access to either the shell or the web CLI with administrator privileges could access the underlying operating system as the root user.
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT PRO (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2P IRT (All versions < V5.5.2), SCALANCE X202-2P IRT PRO (All versions < V5.5.2), SCALANCE X204-2 (All versions < V5.2.6), SCALANCE X204-2FM (All versions < V5.2.6), SCALANCE X204-2LD (All versions < V5.2.6), SCALANCE X204-2LD TS (All versions < V5.2.6), SCALANCE X204-2TS (All versions < V5.2.6), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT PRO (All versions < V5.5.2), SCALANCE X206-1 (All versions < V5.2.6), SCALANCE X206-1LD (All versions < V5.2.6), SCALANCE X208 (All versions < V5.2.6), SCALANCE X208PRO (All versions < V5.2.6), SCALANCE X212-2 (All versions < V5.2.6), SCALANCE X212-2LD (All versions < V5.2.6), SCALANCE X216 (All versions < V5.2.6), SCALANCE X224 (All versions < V5.2.6), SCALANCE XF201-3P IRT (All versions < V5.5.2), SCALANCE XF202-2P IRT (All versions < V5.5.2), SCALANCE XF204 (All versions < V5.2.6), SCALANCE XF204-2 (All versions < V5.2.6), SCALANCE XF204-2BA IRT (All versions < V5.5.2), SCALANCE XF204IRT (All versions < V5.5.2), SCALANCE XF206-1 (All versions < V5.2.6), SCALANCE XF208 (All versions < V5.2.6). Affected devices do not properly validate the URI of incoming HTTP GET requests. This could allow an unauthenticated remote attacker to crash affected devices.
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT PRO (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2P IRT (All versions < V5.5.2), SCALANCE X202-2P IRT PRO (All versions < V5.5.2), SCALANCE X204-2 (All versions < V5.2.6), SCALANCE X204-2FM (All versions < V5.2.6), SCALANCE X204-2LD (All versions < V5.2.6), SCALANCE X204-2LD TS (All versions < V5.2.6), SCALANCE X204-2TS (All versions < V5.2.6), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT PRO (All versions < V5.5.2), SCALANCE X206-1 (All versions < V5.2.6), SCALANCE X206-1LD (All versions < V5.2.6), SCALANCE X208 (All versions < V5.2.6), SCALANCE X208PRO (All versions < V5.2.6), SCALANCE X212-2 (All versions < V5.2.6), SCALANCE X212-2LD (All versions < V5.2.6), SCALANCE X216 (All versions < V5.2.6), SCALANCE X224 (All versions < V5.2.6), SCALANCE XF201-3P IRT (All versions < V5.5.2), SCALANCE XF202-2P IRT (All versions < V5.5.2), SCALANCE XF204 (All versions < V5.2.6), SCALANCE XF204-2 (All versions < V5.2.6), SCALANCE XF204-2BA IRT (All versions < V5.5.2), SCALANCE XF204IRT (All versions < V5.5.2), SCALANCE XF206-1 (All versions < V5.2.6), SCALANCE XF208 (All versions < V5.2.6). Affected devices do not properly validate the GET parameter XNo of incoming HTTP requests. This could allow an unauthenticated remote attacker to crash affected devices.
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT (All versions < V5.5.2), SCALANCE X201-3P IRT PRO (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2IRT (All versions < V5.5.2), SCALANCE X202-2P IRT (All versions < V5.5.2), SCALANCE X202-2P IRT PRO (All versions < V5.5.2), SCALANCE X204-2 (All versions < V5.2.6), SCALANCE X204-2FM (All versions < V5.2.6), SCALANCE X204-2LD (All versions < V5.2.6), SCALANCE X204-2LD TS (All versions < V5.2.6), SCALANCE X204-2TS (All versions < V5.2.6), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT (All versions < V5.5.2), SCALANCE X204IRT PRO (All versions < V5.5.2), SCALANCE X206-1 (All versions < V5.2.6), SCALANCE X206-1LD (All versions < V5.2.6), SCALANCE X208 (All versions < V5.2.6), SCALANCE X208PRO (All versions < V5.2.6), SCALANCE X212-2 (All versions < V5.2.6), SCALANCE X212-2LD (All versions < V5.2.6), SCALANCE X216 (All versions < V5.2.6), SCALANCE X224 (All versions < V5.2.6), SCALANCE XF201-3P IRT (All versions < V5.5.2), SCALANCE XF202-2P IRT (All versions < V5.5.2), SCALANCE XF204 (All versions < V5.2.6), SCALANCE XF204-2 (All versions < V5.2.6), SCALANCE XF204-2BA IRT (All versions < V5.5.2), SCALANCE XF204IRT (All versions < V5.5.2), SCALANCE XF206-1 (All versions < V5.2.6), SCALANCE XF208 (All versions < V5.2.6). The webserver of affected devices calculates session ids and nonces in an insecure manner. This could allow an unauthenticated remote attacker to brute-force session ids and hijack existing sessions.
curl < 7.84.0 supports "chained" HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable "links" in this "decompression chain" was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a "malloc bomb", makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors.
A malicious server can serve excessive amounts of `Set-Cookie:` headers in a HTTP response to curl and curl < 7.84.0 stores all of them. A sufficiently large amount of (big) cookies make subsequent HTTP requests to this, or other servers to which the cookies match, create requests that become larger than the threshold that curl uses internally to avoid sending crazy large requests (1048576 bytes) and instead returns an error.This denial state might remain for as long as the same cookies are kept, match and haven't expired. Due to cookie matching rules, a server on `foo.example.com` can set cookies that also would match for `bar.example.com`, making it it possible for a "sister server" to effectively cause a denial of service for a sibling site on the same second level domain using this method.
AES OCB mode for 32-bit x86 platforms using the AES-NI assembly optimised implementation will not encrypt the entirety of the data under some circumstances. This could reveal sixteen bytes of data that was preexisting in the memory that wasn't written. In the special case of "in place" encryption, sixteen bytes of the plaintext would be revealed. Since OpenSSL does not support OCB based cipher suites for TLS and DTLS, they are both unaffected. Fixed in OpenSSL 3.0.5 (Affected 3.0.0-3.0.4). Fixed in OpenSSL 1.1.1q (Affected 1.1.1-1.1.1p).
In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze).
A vulnerability has been identified in Cerberus DMS (All versions), Desigo CC (All versions), Desigo CC Compact (All versions), SIMATIC WinCC OA V3.16 (All versions in default configuration), SIMATIC WinCC OA V3.17 (All versions in non-default configuration), SIMATIC WinCC OA V3.18 (All versions in non-default configuration). Affected applications use client-side only authentication, when neither server-side authentication (SSA) nor Kerberos authentication is enabled. In this configuration, attackers could impersonate other users or exploit the client-server protocol without being authenticated.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The affected application contains a file upload server that is vulnerable to command injection. An attacker could use this to achieve arbitrary code execution.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The affected application contains a misconfiguration in the APT update. This could allow an attacker to add insecure packages to the application.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.2 SP1). The affected application creates temporary user credentials for UMC (User Management Component) users. An attacker could use these temporary credentials for authentication bypass in certain scenarios.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The system images for installation or update of the affected application contain unit test scripts with sensitive information. An attacker could gain information about testing architecture and also tamper with test configuration.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The affected application contains an older feature that allows to import device configurations via a specific endpoint. An attacker could use this vulnerability for information disclosure.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The affected application consists of a web service that lacks proper access control for some of the endpoints. This could lead to low privileged users accessing privileged information.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The affected application consists of a web service that lacks proper access control for some of the endpoints. This could lead to unauthorized access to limited information.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). A customized HTTP POST request could force the application to write the status of a given user to a log file, exposing sensitive user information that could provide valuable guidance to an attacker.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). Due to improper input validation, the OpenSSL certificate's password could be printed to a file reachable by an attacker.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). The application does not perform the integrity check of the update packages. Without validation, an admin user might be tricked to install a malicious package, granting root privileges to an attacker.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). There is a missing authentication verification for a resource used to change the roles and permissions of a user. This could allow an attacker to change the permissions of any user and gain the privileges of an administrative user.
A vulnerability has been identified in Teamcenter Active Workspace V5.2 (All versions < V5.2.9), Teamcenter Active Workspace V6.0 (All versions < V6.0.3). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected application that could allow an attacker to execute malicious code by tricking users into accessing a malicious link.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.13), Teamcenter V13.0 (All versions < V13.0.0.9), Teamcenter V13.1 (All versions < V13.1.0.9), Teamcenter V13.2 (All versions < V13.2.0.9), Teamcenter V13.3 (All versions < V13.3.0.3), Teamcenter V14.0 (All versions < V14.0.0.2). Java EE Server Manager HTML Adaptor in Teamcenter consists of default hardcoded credentials. Access to the application allows a user to perform a series of actions that could potentially lead to remote code execution with elevated permissions.
A vulnerability has been identified in Xpedition Designer VX.2.10 (All versions < VX.2.10 Update 13), Xpedition Designer VX.2.11 (All versions < VX.2.11 Update 11), Xpedition Designer VX.2.12 (All versions < VX.2.12 Update 5), Xpedition Designer VX.2.13 (All versions < VX.2.13 Update 1). The affected application assigns improper access rights to the service executable. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges.
A vulnerability has been identified in EN100 Ethernet module DNP3 IP variant (All versions), EN100 Ethernet module IEC 104 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.37), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). Affected applications contains a memory corruption vulnerability while parsing specially crafted HTTP packets to /txtrace endpoint. This could allow an attacker to crash the affected application leading to a denial of service condition.
A vulnerability has been identified in SICAM GridEdge Essential ARM (All versions < V2.6.6), SICAM GridEdge Essential Intel (All versions < V2.6.6), SICAM GridEdge Essential with GDS ARM (All versions < V2.6.6), SICAM GridEdge Essential with GDS Intel (All versions < V2.6.6). The affected software discloses password hashes of other users upon request. This could allow an authenticated user to retrieve another users password hash.
A vulnerability has been identified in SICAM GridEdge Essential ARM (All versions < V2.6.6), SICAM GridEdge Essential Intel (All versions < V2.6.6), SICAM GridEdge Essential with GDS ARM (All versions < V2.6.6), SICAM GridEdge Essential with GDS Intel (All versions < V2.6.6). The affected software does not require authenticated access for privileged functions. This could allow an unauthenticated attacker to create a new user with administrative permissions.
A vulnerability has been identified in SICAM GridEdge Essential ARM (All versions < V2.6.6), SICAM GridEdge Essential Intel (All versions < V2.6.6), SICAM GridEdge Essential with GDS ARM (All versions < V2.6.6), SICAM GridEdge Essential with GDS Intel (All versions < V2.6.6). The affected software does not require authenticated access for privileged functions. This could allow an unauthenticated attacker to change data of an user, such as credentials, in case that user's id is known.
A vulnerability has been identified in SICAM GridEdge Essential ARM (All versions < V2.6.6), SICAM GridEdge Essential Intel (All versions < V2.6.6), SICAM GridEdge Essential with GDS ARM (All versions < V2.6.6), SICAM GridEdge Essential with GDS Intel (All versions < V2.6.6). The affected software does not apply cross-origin resource sharing (CORS) restrictions for critical operations. In case an attacker tricks a legitimate user into accessing a special resource a malicious request could be executed.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). An error message pop up window in the web interface of the affected application does not prevent injection of JavaScript code. This could allow attackers to perform reflected cross-site scripting (XSS) attacks.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.1). An attacker in machine-in-the-middle could obtain plaintext secret values by observing length differences during a series of guesses in which a string in an HTTP request URL potentially matches an unknown string in an HTTP response body, aka a "BREACH" attack.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). Affected application is missing general HTTP security headers in the web server configured on port 6220. This could aid attackers by making the servers more prone to clickjacking, channel downgrade attacks and other similar client-based attack vectors.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). Affected application is missing general HTTP security headers in the web server configured on port 443. This could aid attackers by making the servers more prone to clickjacking, channel downgrade attacks and other similar client-based attack vectors.
A vulnerability has been identified in Spectrum Power 4 (All versions using Shared HIS), Spectrum Power 7 (All versions using Shared HIS), Spectrum Power MGMS (All versions using Shared HIS). An unauthenticated attacker could log into the component Shared HIS used in Spectrum Power systems by using an account with default credentials. A successful exploitation could allow the attacker to access the component Shared HIS with administrative privileges.
A vulnerability has been identified in SCALANCE XM408-4C (All versions < V6.5), SCALANCE XM408-4C (L3 int.) (All versions < V6.5), SCALANCE XM408-8C (All versions < V6.5), SCALANCE XM408-8C (L3 int.) (All versions < V6.5), SCALANCE XM416-4C (All versions < V6.5), SCALANCE XM416-4C (L3 int.) (All versions < V6.5), SCALANCE XR524-8C, 1x230V (All versions < V6.5), SCALANCE XR524-8C, 1x230V (L3 int.) (All versions < V6.5), SCALANCE XR524-8C, 24V (All versions < V6.5), SCALANCE XR524-8C, 24V (L3 int.) (All versions < V6.5), SCALANCE XR524-8C, 2x230V (All versions < V6.5), SCALANCE XR524-8C, 2x230V (L3 int.) (All versions < V6.5), SCALANCE XR526-8C, 1x230V (All versions < V6.5), SCALANCE XR526-8C, 1x230V (L3 int.) (All versions < V6.5), SCALANCE XR526-8C, 24V (All versions < V6.5), SCALANCE XR526-8C, 24V (L3 int.) (All versions < V6.5), SCALANCE XR526-8C, 2x230V (All versions < V6.5), SCALANCE XR526-8C, 2x230V (L3 int.) (All versions < V6.5), SCALANCE XR528-6M (All versions < V6.5), SCALANCE XR528-6M (2HR2) (All versions < V6.5), SCALANCE XR528-6M (2HR2, L3 int.) (All versions < V6.5), SCALANCE XR528-6M (L3 int.) (All versions < V6.5), SCALANCE XR552-12M (All versions < V6.5), SCALANCE XR552-12M (2HR2) (All versions < V6.5), SCALANCE XR552-12M (2HR2) (All versions < V6.5), SCALANCE XR552-12M (2HR2, L3 int.) (All versions < V6.5). The OSPF protocol implementation in affected devices fails to verify the checksum and length fields in the OSPF LS Update messages. An unauthenticated remote attacker could exploit this vulnerability to cause interruptions in the network by sending specially crafted OSPF packets. Successful exploitation requires OSPF to be enabled on an affected device.
A vulnerability has been identified in Biograph Horizon PET/CT Systems (All VJ30 versions < VJ30C-UD01), MAGNETOM Family (NUMARIS X: VA12M, VA12S, VA10B, VA20A, VA30A, VA31A), MAMMOMAT Revelation (All VC20 versions < VC20D), NAEOTOM Alpha (All VA40 versions < VA40 SP2), SOMATOM X.cite (All versions < VA30 SP5 or VA40 SP2), SOMATOM X.creed (All versions < VA30 SP5 or VA40 SP2), SOMATOM go.All (All versions < VA30 SP5 or VA40 SP2), SOMATOM go.Now (All versions < VA30 SP5 or VA40 SP2), SOMATOM go.Open Pro (All versions < VA30 SP5 or VA40 SP2), SOMATOM go.Sim (All versions < VA30 SP5 or VA40 SP2), SOMATOM go.Top (All versions < VA30 SP5 or VA40 SP2), SOMATOM go.Up (All versions < VA30 SP5 or VA40 SP2), Symbia E/S (All VB22 versions < VB22A-UD03), Symbia Evo (All VB22 versions < VB22A-UD03), Symbia Intevo (All VB22 versions < VB22A-UD03), Symbia T (All VB22 versions < VB22A-UD03), Symbia.net (All VB22 versions < VB22A-UD03), syngo.via VB10 (All versions), syngo.via VB20 (All versions), syngo.via VB30 (All versions), syngo.via VB40 (All versions < VB40B HF06), syngo.via VB50 (All versions), syngo.via VB60 (All versions < VB60B HF02). The application deserialises untrusted data without sufficient validations that could result in an arbitrary deserialization. This could allow an unauthenticated attacker to execute code in the affected system if ports 32912/tcp or 32914/tcp are reachable.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not restrict unauthenticated access to certain pages of the web interface. This could allow an attacker to delete log files without authentication.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not handle uploaded files correctly. An unauthenticated attacker could take advantage of this situation to store an XSS attack, which could - when a legitimate user accesses the error logs - perform arbitrary actions in the name of the user.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). The web based management interface of affected devices does not employ special access protection for certain internal developer views. This could allow unauthenticated users to extract internal configuration details.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not properly validate input in the configuration interface. This could allow an authenticated attacker to place persistent XSS attacks to perform arbitrary actions in the name of a logged user which accesses the affected views.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). The web based management interface of affected devices does not employ special access protection for certain internal developer views. This could allow authenticated users to access critical device information.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices use a limited range for challenges that are sent during the unencrypted challenge-response communication. An unauthenticated attacker could capture a valid challenge-response pair generated by a legitimate user, and request the webpage repeatedly to wait for the same challenge to reappear for which the correct response is known. This could allow the attacker to access the management interface of the device.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices allow unauthenticated access to the web interface configuration area. This could allow an attacker to extract internal configuration details or to reconfigure network settings. However, the reconfigured settings cannot be activated unless the role of an authenticated administrator user.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not properly handle the input of a GET request parameter. The provided argument is directly reflected in the web server response. This could allow an unauthenticated attacker to perform reflected XSS attacks.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not encrypt web traffic with clients but communicate in cleartext via HTTP. This could allow an unauthenticated attacker to capture the traffic and interfere with the functionality of the device.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not properly validate parameters of certain GET and POST requests. This could allow an unauthenticated attacker to set the device to a denial of service state or to control the program counter and, thus, execute arbitrary code on the device.
A vulnerability has been identified in SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P850 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00), SICAM P855 (All versions < V3.00). Affected devices do not properly validate parameters of POST requests. This could allow an authenticated attacker to set the device to a denial of service state or to control the program counter and, thus, execute arbitrary code on the device.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.13), Teamcenter V13.0 (All versions < V13.0.0.9). The application contains a XML External Entity Injection (XXE) vulnerability. This could allow an attacker to view files on the application server filesystem.
A vulnerability has been identified in JT2Go (All versions < V13.3.0.3), Teamcenter Visualization V13.3 (All versions < V13.3.0.3), Teamcenter Visualization V14.0 (All versions < V14.0.0.1). The CGM_NIST_Loader.dll library is vulnerable to uninitialized pointer free while parsing specially crafted CGM files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.3.0.3), Teamcenter Visualization V13.3 (All versions < V13.3.0.3), Teamcenter Visualization V14.0 (All versions < V14.0.0.1). The CGM_NIST_Loader.dll library contains a double free vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.3.0.3), Teamcenter Visualization V13.3 (All versions < V13.3.0.3), Teamcenter Visualization V14.0 (All versions < V14.0.0.1). The CGM_NIST_Loader.dll contains a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V13.3.0.3), Teamcenter Visualization V13.3 (All versions < V13.3.0.3), Teamcenter Visualization V14.0 (All versions < V14.0.0.1). The Mono_Loader.dll library is vulnerable to integer overflow condition while parsing specially crafted TG4 files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V13.3.0.3), Teamcenter Visualization V13.3 (All versions < V13.3.0.3), Teamcenter Visualization V14.0 (All versions < V14.0.0.1). The CGM_NIST_Loader.dll contains a null pointer dereference vulnerability while parsing specially crafted CGM files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in JT2Go (All versions < V13.3.0.3), Teamcenter Visualization V13.3 (All versions < V13.3.0.3), Teamcenter Visualization V14.0 (All versions < V14.0.0.1). The Tiff_Loader.dll is vulnerable to infinite loop condition while parsing specially crafted TIFF files. An attacker could leverage this vulnerability to crash the application causing denial of service condition.
A vulnerability has been identified in Simcenter Femap (All versions < V2022.2). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted .NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15594)
A vulnerability has been identified in SIMATIC CP 442-1 RNA (All versions < V1.5.18), SIMATIC CP 443-1 RNA (All versions < V1.5.18). The affected devices improperly handles excessive ARP broadcast requests. This could allow an attacker to create a denial of service condition by performing ARP storming attacks, which can cause the device to reboot.
A vulnerability has been identified in OpenV2G (V0.9.4). The OpenV2G EXI parsing feature is missing a length check when parsing X509 serial numbers. Thus, an attacker could introduce a buffer overflow that leads to memory corruption.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.13), Teamcenter V13.0 (All versions < V13.0.0.9), Teamcenter V13.1 (All versions), Teamcenter V13.2 (All versions < V13.2.0.8), Teamcenter V13.3 (All versions < V13.3.0.3), Teamcenter V14.0 (All versions < V14.0.0.2). The tcserver.exe binary in affected applications is vulnerable to a stack overflow condition during the parsing of user input that may lead the binary to crash.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3 UC06), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP1 UC01), SIMATIC WinCC Runtime Professional V16 and earlier (All versions), SIMATIC WinCC Runtime Professional V17 (All versions < V17 Upd4), SIMATIC WinCC V7.3 (All versions), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 21), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 8). A missing printer configuration on the host could allow an authenticated attacker to escape the WinCC Kiosk Mode.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The application, after a successful login, sets the session cookie on the browser via client-side JavaScript code, without applying any security attributes (such as “Secure”, “HttpOnly”, or “SameSite”). Any attempts to browse the application via unencrypted HTTP protocol would lead to the transmission of all his/her session cookies in plaintext through the network. An attacker could then be able to sniff the network and capture sensitive information.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The login functionality of the application does not employ any countermeasures against Password Spraying attacks or Credential Stuffing attacks. An attacker could obtain a list of valid usernames on the device by exploiting the issue and then perform a precise Password Spraying or Credential Stuffing attack in order to obtain access to at least one account.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The login functionality of the application fails to normalize the response times of login attempts performed with wrong usernames with the ones executed with correct usernames. A remote unauthenticated attacker could exploit this side-channel information to perform a username enumeration attack and identify valid usernames.
A use-after-free in Busybox 1.35-x's awk applet leads to denial of service and possibly code execution when processing a crafted awk pattern in the copyvar function.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The web application returns an AuthToken that does not expire at the defined auto logoff delay timeout. An attacker could be able to capture this token and re-use old session credentials or session IDs for authorization.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The web application stores the PBKDF2 derived key of users passwords with a low iteration count. An attacker with user profile access privilege can retrieve the stored password hashes of other accounts and then successfully perform an offline cracking attack and recover the plaintext passwords of other users.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The web application fails to enforce an upper bound to the cost factor of the PBKDF2 derived key during the creation or update of an account. An attacker with the user profile access privilege could cause a denial of service (DoS) condition through CPU consumption by setting a PBKDF2 derived key with a remarkably high cost effort and then attempting a login to the so-modified account.
A vulnerability has been identified in Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). The “addCell” JavaScript function fails to properly sanitize user-controllable input before including it into the generated XML body of the XLS report document, such that it is possible to inject arbitrary content (e.g., XML tags) into the generated file. An attacker with restricted privileges, by poisoning any of the content used to generate XLS reports, could be able to leverage the application to deliver malicious files against higher-privileged users and obtain Remote Code Execution (RCE) against the administrator’s workstation.
A vulnerability has been identified in Desigo DXR2 (All versions < V01.21.142.5-22), Desigo PXC3 (All versions < V01.21.142.4-18), Desigo PXC4 (All versions < V02.20.142.10-10884), Desigo PXC5 (All versions < V02.20.142.10-10884). When the controller receives a specific BACnet protocol packet, an exception causes the BACnet communication function to go into a “out of work” state and could result in the controller going into a “factory reset” state.
A vulnerability has been identified in Simcenter Femap (All versions < V2022.1.2). The affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted .NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15592)
A vulnerability has been identified in Simcenter Femap (All versions < V2022.1.2). The affected application contains an out of bounds write past the end of an allocated buffer while parsing specially crafted .NEU files. This could allow an attacker to leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15307)
A vulnerability has been identified in Simcenter Femap (All versions < V2022.1.2). The affected application contains an out of bounds read past the end of an allocated buffer while parsing specially crafted .NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15114)
A vulnerability has been identified in SCALANCE W1788-1 M12 (All versions < V3.0.0), SCALANCE W1788-2 EEC M12 (All versions < V3.0.0), SCALANCE W1788-2 M12 (All versions < V3.0.0), SCALANCE W1788-2IA M12 (All versions < V3.0.0). Affected devices do not properly handle malformed TCP packets received over the RemoteCapture feature. This could allow an attacker to lead to a denial of service condition which only affects the port used by the RemoteCapture feature.
A vulnerability has been identified in SCALANCE W1788-1 M12 (All versions < V3.0.0), SCALANCE W1788-2 EEC M12 (All versions < V3.0.0), SCALANCE W1788-2 M12 (All versions < V3.0.0), SCALANCE W1788-2IA M12 (All versions < V3.0.0). Affected devices do not properly handle malformed Multicast LLC frames. This could allow an attacker to trigger a denial of service condition.
A vulnerability has been identified in SCALANCE W1788-1 M12 (All versions < V3.0.0), SCALANCE W1788-2 EEC M12 (All versions < V3.0.0), SCALANCE W1788-2 M12 (All versions < V3.0.0), SCALANCE W1788-2IA M12 (All versions < V3.0.0). Affected devices do not properly handle resources of ARP requests. This could allow an attacker to cause a race condition that leads to a crash of the entire device.
A vulnerability has been identified in SICAM A8000 CP-8031 (All versions < V4.80), SICAM A8000 CP-8050 (All versions < V4.80). Affected devices do not require an user to be authenticated to access certain files. This could allow unauthenticated attackers to download these files.
A vulnerability has been identified in SIMATIC PCS neo (Administration Console) (All versions < V3.1 SP1), SINETPLAN (All versions), TIA Portal (V15, V15.1, V16 and V17). The affected system cannot properly process specially crafted packets sent to port 8888/tcp. A remote attacker could exploit this vulnerability to cause a Denial-of-Service condition. The affected devices must be restarted manually.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate if a certain SNMP key exists. An attacker could use this to trigger a reboot of an affected device by requesting specific SNMP information from the device.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the URI of incoming HTTP GET requests. This could allow an unauthenticated remote attacker to crash affected devices.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the GET parameter XNo of incoming HTTP requests. This could allow an unauthenticated remote attacker to crash affected devices.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. The integrated web server could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. This can be used by an attacker to trigger a malicious request on the affected device.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. The webserver of an affected device is missing specific security headers. This could allow an remote attacker to extract confidential session information under certain circumstances.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. The integrated web server of the affected device could allow remote attackers to perform actions with the permissions of a victim user, provided the victim user has an active session and is induced to trigger the malicious request.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. The handling of arguments such as IP addresses in the CLI of affected devices is prone to buffer overflows. This could allow an authenticated remote attacker to execute arbitrary code on the device.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. The webserver of affected devices calculates session ids and nonces in an insecure manner. This could allow an unauthenticated remote attacker to brute-force session ids and hijack existing sessions.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the HTTP headers of incoming requests. This could allow an unauthenticated remote attacker to crash affected devices.
The PROFINET (PNIO) stack, when integrated with the Interniche IP stack, improperly handles internal resources for TCP segments where the minimum TCP-Header length is less than defined. This could allow an attacker to create a denial of service condition for TCP services on affected devices by sending specially crafted TCP segments.
A vulnerability has been identified in SIMATIC Energy Manager Basic (All versions < V7.3 Update 1), SIMATIC Energy Manager PRO (All versions < V7.3 Update 1). The affected system allows remote users to send maliciously crafted objects. Due to insecure deserialization of user-supplied content by the affected software, an unauthenticated attacker could exploit this vulnerability by sending a maliciously crafted serialized object. This could allow the attacker to execute arbitrary code on the device with SYSTEM privileges.
A vulnerability has been identified in SIMATIC Energy Manager Basic (All versions < V7.3 Update 1), SIMATIC Energy Manager PRO (All versions < V7.3 Update 1). A DLL Hijacking vulnerability could allow a local attacker to execute code with elevated privileges by placing a malicious DLL in one of the directories on the DLL search path.
A vulnerability has been identified in SIMATIC Energy Manager Basic (All versions < V7.3 Update 1), SIMATIC Energy Manager PRO (All versions < V7.3 Update 1). Affected applications improperly assign permissions to critical directories and files used by the application processes. This could allow a local unprivileged attacker to achieve code execution with ADMINISTRATOR or even NT AUTHORITY/SYSTEM privileges.
A vulnerability has been identified in SIMATIC STEP 7 (TIA Portal) V15 (All versions), SIMATIC STEP 7 (TIA Portal) V16 (All versions < V16 Update 5), SIMATIC STEP 7 (TIA Portal) V17 (All versions < V17 Update 2). An attacker could achieve privilege escalation on the web server of certain devices due to improper access control vulnerability in the engineering system software. The attacker needs to have direct access to the impacted web server.
A vulnerability has been identified in SIMATIC S7-400 CPU 412-1 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416-2 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416F-2 DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 417-4 DP V7 (All versions), SIMATIC S7-400 H V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.10), SIMATIC S7-410 V10 CPU family (incl. SIPLUS variants) (All versions < V10.1), SIMATIC S7-410 V8 CPU family (incl. SIPLUS variants) (All versions < V8.2.3), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 V7 (All versions), SIPLUS S7-400 CPU 417-4 V7 (All versions). Affected devices improperly handle specially crafted packets sent to port 102/tcp. This could allow an attacker to create a Denial-of-Service condition. A restart is needed to restore normal operations.
A Spring MVC or Spring WebFlux application running on JDK 9+ may be vulnerable to remote code execution (RCE) via data binding. The specific exploit requires the application to run on Tomcat as a WAR deployment. If the application is deployed as a Spring Boot executable jar, i.e. the default, it is not vulnerable to the exploit. However, the nature of the vulnerability is more general, and there may be other ways to exploit it.
zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches.
BIND 9.11.0 -> 9.11.36 9.12.0 -> 9.16.26 9.17.0 -> 9.18.0 BIND Supported Preview Editions: 9.11.4-S1 -> 9.11.36-S1 9.16.8-S1 -> 9.16.26-S1 Versions of BIND 9 earlier than those shown - back to 9.1.0, including Supported Preview Editions - are also believed to be affected but have not been tested as they are EOL. The cache could become poisoned with incorrect records leading to queries being made to the wrong servers, which might also result in false information being returned to clients.
BIND 9.16.11 -> 9.16.26, 9.17.0 -> 9.18.0 and versions 9.16.11-S1 -> 9.16.26-S1 of the BIND Supported Preview Edition. Specifically crafted TCP streams can cause connections to BIND to remain in CLOSE_WAIT status for an indefinite period of time, even after the client has terminated the connection.
The OPC autogenerated ANSI C stack stubs (in the NodeSets) do not handle all error cases. This can lead to a NULL pointer dereference.
A flaw was found in the way the "flags" member of the new pipe buffer structure was lacking proper initialization in copy_page_to_iter_pipe and push_pipe functions in the Linux kernel and could thus contain stale values. An unprivileged local user could use this flaw to write to pages in the page cache backed by read only files and as such escalate their privileges on the system.
A vulnerability has been identified in SINEC NMS (All versions >= V1.0.3 < V2.0), SINEC NMS (All versions < V1.0.3), SINEMA Server V14 (All versions). The affected software do not properly check privileges between users during the same web browser session, creating an unintended sphere of control. This could allow an authenticated low privileged user to achieve privilege escalation.
A vulnerability has been identified in Simcenter STAR-CCM+ Viewer (All versions < V2022.1). The starview+.exe contains a memory corruption vulnerability while parsing specially crafted .SCE files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in SINUMERIK MC (All versions < V1.15 SP1), SINUMERIK ONE (All versions < V6.15 SP1). The sc SUID binary on affected devices provides several commands that are used to execute system commands or modify system files. A specific set of operations using sc could allow local attackers to escalate their privileges to root.
A vulnerability has been identified in SINEC NMS (All versions >= V1.0.3 < V2.0), SINEC NMS (All versions < V1.0.3), SINEMA Server V14 (All versions). The affected system allows to upload JSON objects that are deserialized to Java objects. Due to insecure deserialization of user-supplied content by the affected software, a privileged attacker could exploit this vulnerability by sending a maliciously crafted serialized Java object. This could allow the attacker to execute arbitrary code on the device with root privileges.
A vulnerability has been identified in SINEC NMS (All versions < V1.0.3), SINEMA Server V14 (All versions). A privileged authenticated attacker could execute arbitrary commands in the local database by sending specially crafted requests to the webserver of the affected application.
A vulnerability has been identified in Polarion ALM (All versions < V21 R2 P2), Polarion WebClient for SVN (All versions). A cross-site scripting is present due to improper neutralization of data sent to the web page through the SVN WebClient in the affected product. An attacker could exploit this to execute arbitrary code and extract sensitive information by sending a specially crafted link to users with administrator privileges.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. The third-party component, in its TFTP functionality fails to check for null terminations in file names. If an attacker were to exploit this, it could result in data corruption, and possibly a hard-fault of the application.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. Within a third-party component, the process to allocate partition size fails to check memory boundaries. Therefore, if a large amount is requested by an attacker, due to an integer-wrap around, it could result in a small size being allocated instead.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. Within a third-party component, whenever memory allocation is requested, the out of bound size is not checked. Therefore, if size exceeding the expected allocation is assigned, it could allocate a smaller buffer instead. If an attacker were to exploit this, they could cause a heap overflow.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i801, RUGGEDCOM i802, RUGGEDCOM i803, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM RMC30, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RP110, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600T, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS401, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000H, RUGGEDCOM RS8000T, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900L, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS969, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSL910, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. A new variant of the POODLE attack has left a third-party component vulnerable due to the implementation flaws of the CBC encryption mode in TLS 1.0 to 1.2. If an attacker were to exploit this, they could act as a man-in-the-middle and eavesdrop on encrypted communications.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i801, RUGGEDCOM i802, RUGGEDCOM i803, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM RMC30, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RP110, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600T, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS401, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000H, RUGGEDCOM RS8000T, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900L, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS969, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSL910, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. A timing attack, in a third-party component, could make the retrieval of the private key possible, used for encryption of sensitive data. If a threat actor were to exploit this, the data integrity and security could be compromised.
A vulnerability has been identified in Climatix POL909 (AWB module) (All versions < V11.44), Climatix POL909 (AWM module) (All versions < V11.36). The handling of log files in the web application of affected devices contains an information disclosure vulnerability which could allow logged in users to access sensitive files.
A vulnerability has been identified in Climatix POL909 (AWB module) (All versions < V11.44), Climatix POL909 (AWM module) (All versions < V11.36). The User Management page of affected devices is vulnerable to cross-site scripting (XSS). The vulnerability allows an attacker to send malicious JavaScript code which could result in hijacking of the user's cookie/session tokens, redirecting the user to a malicious webpage and performing unintended browser action.
A vulnerability has been identified in Climatix POL909 (AWB module) (All versions < V11.44), Climatix POL909 (AWM module) (All versions < V11.36). The Group Management page of affected devices is vulnerable to cross-site scripting (XSS). The vulnerability allows an attacker to send malicious JavaScript code which could result in hijacking of the user's cookie/session tokens, redirecting the user to a malicious webpage and performing unintended browser action.
A vulnerability has been identified in RUGGEDCOM i800 (All versions < V4.3.8), RUGGEDCOM i801 (All versions < V4.3.8), RUGGEDCOM i802 (All versions < V4.3.8), RUGGEDCOM i803 (All versions < V4.3.8), RUGGEDCOM M2100 (All versions < V4.3.8), RUGGEDCOM M2200 (All versions < V4.3.8), RUGGEDCOM M969 (All versions < V4.3.8), RUGGEDCOM RMC30 (All versions < V4.3.8), RUGGEDCOM RMC8388 V4.X (All versions < V4.3.8), RUGGEDCOM RMC8388 V5.X (All versions < V5.7.0), RUGGEDCOM RP110 (All versions < V4.3.8), RUGGEDCOM RS1600 (All versions < V4.3.8), RUGGEDCOM RS1600F (All versions < V4.3.8), RUGGEDCOM RS1600T (All versions < V4.3.8), RUGGEDCOM RS400 (All versions < V4.3.8), RUGGEDCOM RS401 (All versions < V4.3.8), RUGGEDCOM RS416 (All versions < V4.3.8), RUGGEDCOM RS416P (All versions < V4.3.8), RUGGEDCOM RS416Pv2 V4.X (All versions < V4.3.8), RUGGEDCOM RS416Pv2 V5.X (All versions < V5.7.0), RUGGEDCOM RS416v2 V4.X (All versions < V4.3.8), RUGGEDCOM RS416v2 V5.X (All versions < V5.7.0), RUGGEDCOM RS8000 (All versions < V4.3.8), RUGGEDCOM RS8000A (All versions < V4.3.8), RUGGEDCOM RS8000H (All versions < V4.3.8), RUGGEDCOM RS8000T (All versions < V4.3.8), RUGGEDCOM RS900 (All versions < V4.3.8), RUGGEDCOM RS900 (32M) V4.X (All versions < V4.3.8), RUGGEDCOM RS900 (32M) V5.X (All versions < V5.7.0), RUGGEDCOM RS900G (All versions < V4.3.8), RUGGEDCOM RS900G (32M) V4.X (All versions < V4.3.8), RUGGEDCOM RS900G (32M) V5.X (All versions < V5.7.0), RUGGEDCOM RS900GP (All versions < V4.3.8), RUGGEDCOM RS900L (All versions < V4.3.8), RUGGEDCOM RS900M-GETS-C01 (All versions < V4.3.8), RUGGEDCOM RS900M-GETS-XX (All versions < V4.3.8), RUGGEDCOM RS900M-STND-C01 (All versions < V4.3.8), RUGGEDCOM RS900M-STND-XX (All versions < V4.3.8), RUGGEDCOM RS900W (All versions < V4.3.8), RUGGEDCOM RS910 (All versions < V4.3.8), RUGGEDCOM RS910L (All versions < V4.3.8), RUGGEDCOM RS910W (All versions < V4.3.8), RUGGEDCOM RS920L (All versions < V4.3.8), RUGGEDCOM RS920W (All versions < V4.3.8), RUGGEDCOM RS930L (All versions < V4.3.8), RUGGEDCOM RS930W (All versions < V4.3.8), RUGGEDCOM RS940G (All versions < V4.3.8), RUGGEDCOM RS969 (All versions < V4.3.8), RUGGEDCOM RSG2100 (All versions < V4.3.8), RUGGEDCOM RSG2100 (32M) V4.X (All versions < V4.3.8), RUGGEDCOM RSG2100 (32M) V5.X (All versions < V5.7.0), RUGGEDCOM RSG2100P (All versions < V4.3.8), RUGGEDCOM RSG2200 (All versions < V4.3.8), RUGGEDCOM RSG2288 V4.X (All versions < V4.3.8), RUGGEDCOM RSG2288 V5.X (All versions < V5.7.0), RUGGEDCOM RSG2300 V4.X (All versions < V4.3.8), RUGGEDCOM RSG2300 V5.X (All versions < V5.7.0), RUGGEDCOM RSG2300P V4.X (All versions < V4.3.8), RUGGEDCOM RSG2300P V5.X (All versions < V5.7.0), RUGGEDCOM RSG2488 V4.X (All versions < V4.3.8), RUGGEDCOM RSG2488 V5.X (All versions < V5.7.0), RUGGEDCOM RSG907R (All versions < V5.7.0), RUGGEDCOM RSG908C (All versions < V5.7.0), RUGGEDCOM RSG909R (All versions < V5.7.0), RUGGEDCOM RSG910C (All versions < V5.7.0), RUGGEDCOM RSG920P V4.X (All versions < V4.3.8), RUGGEDCOM RSG920P V5.X (All versions < V5.7.0), RUGGEDCOM RSL910 (All versions < V5.7.0), RUGGEDCOM RST2228 (All versions < V5.7.0), RUGGEDCOM RST2228P (All versions < V5.7.0), RUGGEDCOM RST916C (All versions < V5.7.0), RUGGEDCOM RST916P (All versions < V5.7.0). The SSH server on affected devices is configured to offer weak ciphers by default. This could allow an unauthorized attacker in a man-in-the-middle position to read and modify any data passed over the connection between legitimate clients and the affected device.
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i800NC, RUGGEDCOM i801, RUGGEDCOM i801NC, RUGGEDCOM i802, RUGGEDCOM i802NC, RUGGEDCOM i803, RUGGEDCOM i803NC, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2100NC, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M2200NC, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM M969NC, RUGGEDCOM RMC30, RUGGEDCOM RMC30NC, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RMC8388NC V4.X, RUGGEDCOM RMC8388NC V5.X, RUGGEDCOM RP110, RUGGEDCOM RP110NC, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600FNC, RUGGEDCOM RS1600NC, RUGGEDCOM RS1600T, RUGGEDCOM RS1600TNC, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS400NC, RUGGEDCOM RS401, RUGGEDCOM RS401NC, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416NC, RUGGEDCOM RS416NCv2 V4.X, RUGGEDCOM RS416NCv2 V5.X, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416PNC, RUGGEDCOM RS416PNCv2 V4.X, RUGGEDCOM RS416PNCv2 V5.X, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000ANC, RUGGEDCOM RS8000H, RUGGEDCOM RS8000HNC, RUGGEDCOM RS8000NC, RUGGEDCOM RS8000T, RUGGEDCOM RS8000TNC, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GNC, RUGGEDCOM RS900GNC(32M) V4.X, RUGGEDCOM RS900GNC(32M) V5.X, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900GPNC, RUGGEDCOM RS900L, RUGGEDCOM RS900LNC, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900MNC-GETS-C01, RUGGEDCOM RS900MNC-GETS-XX, RUGGEDCOM RS900MNC-STND-XX, RUGGEDCOM RS900MNC-STND-XX-C01, RUGGEDCOM RS900NC, RUGGEDCOM RS900NC(32M) V4.X, RUGGEDCOM RS900NC(32M) V5.X, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910LNC, RUGGEDCOM RS910NC, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920LNC, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930LNC, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS940GNC, RUGGEDCOM RS969, RUGGEDCOM RS969NC, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100NC, RUGGEDCOM RSG2100NC(32M) V4.X, RUGGEDCOM RSG2100NC(32M) V5.X, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2100PNC, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2200NC, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2288NC V4.X, RUGGEDCOM RSG2288NC V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300NC V4.X, RUGGEDCOM RSG2300NC V5.X, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2300PNC V4.X, RUGGEDCOM RSG2300PNC V5.X, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG2488NC V4.X, RUGGEDCOM RSG2488NC V5.X, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSG920PNC V4.X, RUGGEDCOM RSG920PNC V5.X, RUGGEDCOM RSL910, RUGGEDCOM RSL910NC, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. Improper neutralization of special characters on the web server configuration page could allow an attacker, in a privileged position, to retrieve sensitive information via cross-site scripting.
A vulnerability has been identified in Simcenter Femap (All versions < V2022.1.1). Affected application contains a stack based buffer overflow vulnerability while parsing specially crafted BDF files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15061)
A vulnerability has been identified in Simcenter Femap (All versions < V2022.1.1). Affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15048)
In Expat (aka libexpat) before 2.4.5, there is an integer overflow in storeRawNames.
In Expat (aka libexpat) before 2.4.5, there is an integer overflow in copyString.
In Expat (aka libexpat) before 2.4.5, an attacker can trigger stack exhaustion in build_model via a large nesting depth in the DTD element.
xmlparse.c in Expat (aka libexpat) before 2.4.5 allows attackers to insert namespace-separator characters into namespace URIs.
xmltok_impl.c in Expat (aka libexpat) before 2.4.5 lacks certain validation of encoding, such as checks for whether a UTF-8 character is valid in a certain context.
A vulnerability has been identified in Spectrum Power 4 (All versions < V4.70 SP9 Security Patch 1). The integrated web application "Online Help" in affected product contains a Cross-Site Scripting (XSS) vulnerability that could be exploited if unsuspecting users are tricked into accessing a malicious link.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V2.0). Affected products contain an open redirect vulnerability. An attacker could trick a valid authenticated user to the device into clicking a malicious link there by leading to phishing attacks.
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15302)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15286)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15050)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains a stack based buffer overflow vulnerability while parsing NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15085, ZDI-CAN-15289, ZDI-CAN-15602)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains a memory corruption vulnerability while parsing NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14757)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14684)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains a stack based buffer overflow vulnerability while parsing NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14683, ZDI-CAN-15283, ZDI-CAN-15303, ZDI-CAN-15593)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains a stack based buffer overflow vulnerability while parsing NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14646, ZDI-CAN-14679, ZDI-CAN-15084, ZDI-CAN-15304)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains a memory corruption vulnerability while parsing NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14645, ZDI-CAN-15305, ZDI-CAN-15589, ZDI-CAN-15599)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains a type confusion vulnerability while parsing NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14643, ZDI-CAN-14644, ZDI-CAN-14755, ZDI-CAN-15183)
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). Affected application contains an out of bounds write past the end of an allocated structure while parsing specially crafted NEU files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14754, ZDI-CAN-15082)
A vulnerability has been identified in SICAM TOOLBOX II (All versions). Affected applications use a circumventable access control within a database service. This could allow an attacker to access the database.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.7), Solid Edge SE2021 (All versions < SE2021MP9), Solid Edge SE2022 (All versions < SE2022MP1), Teamcenter Visualization V13.1 (All versions < V13.1.0.9), Teamcenter Visualization V13.2 (All versions < V13.2.0.7), Teamcenter Visualization V13.3 (All versions < V13.3.0.1). The plmxmlAdapterSE70.dll library is vulnerable to memory corruption condition while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-15112)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.7), Solid Edge SE2021 (All versions < SE2021MP9), Solid Edge SE2022 (All versions < SE2022MP1), Teamcenter Visualization V13.1 (All versions < V13.1.0.9), Teamcenter Visualization V13.2 (All versions < V13.2.0.7), Teamcenter Visualization V13.3 (All versions < V13.3.0.1). The plmxmlAdapterSE70.dll library is vulnerable to memory corruption condition while parsing specially crafted PAR files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-15110)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.7), Solid Edge SE2021 (All versions < SE2021MP9), Solid Edge SE2022 (All versions < SE2022MP1), Teamcenter Visualization V13.1 (All versions < V13.1.0.9), Teamcenter Visualization V13.2 (All versions < V13.2.0.7), Teamcenter Visualization V13.3 (All versions < V13.3.0.1). The plmxmlAdapterSE70.dll contains an out of bounds write past the fixed-length heap-based buffer while parsing specially crafted PAR files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15053)
A vulnerability has been identified in SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP1), SIMATIC WinCC V15 and earlier (All versions < V15 SP1 Update 7), SIMATIC WinCC V16 (All versions < V16 Update 5), SIMATIC WinCC V17 (All versions < V17 Update 2), SIMATIC WinCC V17 (All versions <= V17 Update 4), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 19), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 6). The affected component stores the credentials of a local system account in a potentially publicly accessible project file using an outdated cipher algorithm. An attacker may use this to brute force the credentials and take over the system.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP1), SIMATIC WinCC V15 and earlier (All versions < V15 SP1 Update 7), SIMATIC WinCC V16 (All versions < V16 Update 5), SIMATIC WinCC V17 (All versions < V17 Update 2), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 19), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 6). The password hash of a local user account in the remote server could be granted via public API to a user on the affected system. An authenticated attacker could brute force the password hash and use it to login to the server.
A vulnerability has been identified in SIMATIC Drive Controller family (All versions >= V2.9.2 < V2.9.4), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions >= V21.9 < V21.9.4), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions >= V4.5.0 < V4.5.2), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.9.2 < V2.9.4), SIMATIC S7-1500 Software Controller (All versions >= V21.9 < V21.9.4), SIMATIC S7-PLCSIM Advanced (All versions >= V4.0 < V4.0 SP1), SIPLUS TIM 1531 IRC (All versions < V2.3.6), TIM 1531 IRC (All versions < V2.3.6). An unauthenticated attacker could cause a denial-of-service condition in a PLC when sending specially prepared packets over port 102/tcp. A restart of the affected device is needed to restore normal operations.
A vulnerability has been identified in SIMATIC Drive Controller family (All versions < V2.9.2), SIMATIC Drive Controller family (All versions >= V2.9.2 < V2.9.4), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants) (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V21.9), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions >= V21.9 < V21.9.4), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 Ready4Linux (All versions), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions < V4.5.0), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions >= V4.5.0 < V4.5.2), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V2.9.2), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.9.2 < V2.9.4), SIMATIC S7-1500 Software Controller (All versions < V21.9), SIMATIC S7-1500 Software Controller (All versions >= V21.9 < V21.9.4), SIMATIC S7-PLCSIM Advanced (All versions < V4.0), SIMATIC S7-PLCSIM Advanced (All versions >= V4.0 < V4.0 SP1), SIPLUS TIM 1531 IRC (All versions < V2.3.6), TIM 1531 IRC (All versions < V2.3.6). An unauthenticated attacker could cause a denial-of-service condition in a PLC when sending specially prepared packet over port 102/tcp. A restart of the affected device is needed to restore normal operations.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS allows to upload and store arbitrary files at the webserver. This could allow an attacker to store malicious files.
A vulnerability has been identified in SIMATIC Drive Controller family (All versions >= V2.9.2 < V2.9.4), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions >= V21.9 < V21.9.4), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions >= V4.5.0 < V4.5.2), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.9.2 < V2.9.4), SIMATIC S7-1500 Software Controller (All versions >= V21.9 < V21.9.4), SIMATIC S7-PLCSIM Advanced (All versions >= V4.0 < V4.0 SP1), SIPLUS TIM 1531 IRC (All versions < V2.3.6), TIM 1531 IRC (All versions < V2.3.6). An unauthenticated attacker could cause a denial-of-service condition in a PLC when sending specially prepared packets over port 102/tcp. A restart of the affected device is needed to restore normal operations.
An issue was discovered in Insyde InsydeH2O with Kernel 5.0 before 05.08.42, Kernel 5.1 before 05.16.42, Kernel 5.2 before 05.26.42, Kernel 5.3 before 05.35.42, Kernel 5.4 before 05.42.51, and Kernel 5.5 before 05.50.51. An SMM memory corruption vulnerability in FvbServicesRuntimeDxe allows a possible attacker to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in Insyde InsydeH2O Kernel 5.0 before 05.08.41, Kernel 5.1 before 05.16.41, Kernel 5.2 before 05.26.41, Kernel 5.3 before 05.35.41, and Kernel 5.4 before 05.42.20. A stack-based buffer overflow leads toarbitrary code execution in UEFI DisplayTypeDxe DXE driver.
An issue was discovered in SdHostDriver in the kernel 5.0 through 5.5 in Insyde InsydeH2O. There is an SMM callout that allows an attacker to access the System Management Mode and execute arbitrary code. This occurs because of a Numeric Range Comparison Without a Minimum Check.
An issue was discovered in AhciBusDxe in the kernel 5.0 through 5.5 in Insyde InsydeH2O. Because of an Untrusted Pointer Dereference that causes SMM memory corruption, an attacker may be able to write fixed or predictable data to SMRAM. Exploiting this issue could lead to escalating privileges to SMM.
An issue was discovered in Insyde InsydeH2O Kernel 5.0 before 05.09.11, 5.1 before 05.17.11, 5.2 before 05.27.11, 5.3 before 05.36.11, 5.4 before 05.44.11, and 5.5 before 05.52.11 affecting FwBlockServiceSmm. Software SMI services that use the Communicate() function of the EFI_SMM_COMMUNICATION_PROTOCOL do not check whether the address of the buffer is valid, which allows use of SMRAM, MMIO, or OS kernel addresses.
An issue was discovered in Kernel 5.x in Insyde InsydeH2O, affecting HddPassword. Software SMI services that use the Communicate() function of the EFI_SMM_COMMUNICATION_PROTOCOL do not check whether the address of the buffer is valid, which allows use of SMRAM, MMIO, or OS kernel addresses.
A vulnerability exists in System Management Interrupt (SWSMI) handler of InsydeH2O UEFI Firmware code located in SWSMI handler that dereferences gRT (EFI_RUNTIME_SERVICES) pointer to call a GetVariable service, which is located outside of SMRAM. This can result in code execution in SMM (escalating privilege from ring 0 to ring -2).
There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For the 1.0.2 release it is addressed in git commit 6fc1aaaf3 that is available to premium support customers only. It will be made available in 1.0.2zc when it is released. The issue only affects OpenSSL on MIPS platforms. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). Fixed in OpenSSL 1.1.1m (Affected 1.1.1-1.1.1l). Fixed in OpenSSL 1.0.2zc-dev (Affected 1.0.2-1.0.2zb).
A local privilege escalation vulnerability was found on polkit's pkexec utility. The pkexec application is a setuid tool designed to allow unprivileged users to run commands as privileged users according predefined policies. The current version of pkexec doesn't handle the calling parameters count correctly and ends trying to execute environment variables as commands. An attacker can leverage this by crafting environment variables in such a way it'll induce pkexec to execute arbitrary code. When successfully executed the attack can cause a local privilege escalation given unprivileged users administrative rights on the target machine.
Expat (aka libexpat) before 2.4.4 has an integer overflow in the doProlog function.
Expat (aka libexpat) before 2.4.4 has a signed integer overflow in XML_GetBuffer, for configurations with a nonzero XML_CONTEXT_BYTES.
node-fetch is vulnerable to Exposure of Sensitive Information to an Unauthorized Actor
A vulnerability has been identified in SICAM PQ Analyzer (All versions < V3.18). A service is started by an unquoted registry entry. As there are spaces in this path, attackers with write privilege to those directories might be able to plant executables that will run in place of the legitimate process. Attackers might achieve persistence on the system ("backdoors") or cause a denial of service.
A vulnerability has been identified in CP-8000 MASTER MODULE WITH I/O -25/+70°C (All versions < V16.20), CP-8000 MASTER MODULE WITH I/O -40/+70°C (All versions < V16.20), CP-8021 MASTER MODULE (All versions < V16.20), CP-8022 MASTER MODULE WITH GPRS (All versions < V16.20). The web server of the affected system allows access to logfiles and diagnostic data generated by a privileged user. An unauthenticated attacker could access the files by knowing the corresponding download links.
A vulnerability has been identified in CP-8000 MASTER MODULE WITH I/O -25/+70°C (All versions < V16.20), CP-8000 MASTER MODULE WITH I/O -40/+70°C (All versions < V16.20), CP-8021 MASTER MODULE (All versions < V16.20), CP-8022 MASTER MODULE WITH GPRS (All versions < V16.20). An undocumented debug port uses hard-coded default credentials. If this port is enabled by a privileged user, an attacker aware of the credentials could access an administrative debug shell on the affected device.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS uses a flawed implementation of CSRF prevention. An attacker could exploit this vulnerability to perform cross-site request forgery attacks.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS is vulnerable to SQL injections. This could allow an attacker to execute arbitrary SQL statements.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.3 (All versions >= V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS unpacks specially crafted archive files to relative paths. This vulnerability could allow an attacker to store files in any folder accessible by the COMOS Web webservice.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS accepts arbitrary code as attachment to tasks. This could allow an attacker to inject malicious code that is executed when loading the attachment.
follow-redirects is vulnerable to Exposure of Private Personal Information to an Unauthorized Actor
storeAtts in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
nextScaffoldPart in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
lookup in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
defineAttribute in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
build_model in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
addBinding in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an integer overflow.
In doProlog in xmlparse.c in Expat (aka libexpat) before 2.4.3, an integer overflow exists for m_groupSize.
In Expat (aka libexpat) before 2.4.3, a left shift by 29 (or more) places in the storeAtts function in xmlparse.c can lead to realloc misbehavior (e.g., allocating too few bytes, or only freeing memory).
In logback version 1.2.7 and prior versions, an attacker with the required privileges to edit configurations files could craft a malicious configuration allowing to execute arbitrary code loaded from LDAP servers.
It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-default configurations. This could allows attackers with control over Thread Context Map (MDC) input data when the logging configuration uses a non-default Pattern Layout with either a Context Lookup (for example, $${ctx:loginId}) or a Thread Context Map pattern (%X, %mdc, or %MDC) to craft malicious input data using a JNDI Lookup pattern resulting in an information leak and remote code execution in some environments and local code execution in all environments. Log4j 2.16.0 (Java 8) and 2.12.2 (Java 7) fix this issue by removing support for message lookup patterns and disabling JNDI functionality by default.
A vulnerability has been identified in SiPass integrated V2.76 (All versions), SiPass integrated V2.80 (All versions), SiPass integrated V2.85 (All versions), Siveillance Identity V1.5 (All versions), Siveillance Identity V1.6 (All versions < V1.6.284.0). Affected applications insufficiently limit the access to the internal user authentication service. This could allow an unauthenticated remote attacker to trigger several actions on behalf of valid user accounts.
A vulnerability has been identified in SiPass integrated V2.76 (All versions), SiPass integrated V2.80 (All versions), SiPass integrated V2.85 (All versions), Siveillance Identity V1.5 (All versions), Siveillance Identity V1.6 (All versions < V1.6.284.0). Affected applications insufficiently limit the access to the internal activity feed database. This could allow an unauthenticated remote attacker to read, modify or delete activity feed entries.
A vulnerability has been identified in SiPass integrated V2.76 (All versions), SiPass integrated V2.80 (All versions), SiPass integrated V2.85 (All versions), Siveillance Identity V1.5 (All versions), Siveillance Identity V1.6 (All versions < V1.6.284.0). Affected applications insufficiently limit the access to the internal message broker system. This could allow an unauthenticated remote attacker to subscribe to arbitrary message queues.
A vulnerability has been identified in JT Utilities (All versions < V12.8.1.1), JTTK (All versions < V10.8.1.1). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15055, ZDI-CAN-14915, ZDI-CAN-14865)
A vulnerability has been identified in JT Utilities (All versions < V12.8.1.1), JTTK (All versions < V10.8.1.1). JTTK library in affected products contains an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14830)
A vulnerability has been identified in JT Utilities (All versions < V13.0.3.0), JTTK (All versions < V11.0.3.0). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-14843, ZDI-CAN-15051)
A vulnerability has been identified in JT Utilities (All versions < V13.0.3.0), JTTK (All versions < V11.0.3.0). JTTK library in affected products contains a use-after-free vulnerability that could be triggered while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14911)
A vulnerability has been identified in JT Utilities (All versions < V13.0.3.0), JTTK (All versions < V11.0.3.0). JTTK library in affected products contains an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14828, ZDI-CAN-14898)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products contains an out of bounds write past the fixed-length heap-based buffer while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15054)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15052)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products contains an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15039)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products contains an out of bounds write past the fixed-length heap-based buffer while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14995)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products contains an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14913)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to memory corruption condition while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14912)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-14908)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14907)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14906)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-14905)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to stack based buffer overflow while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14903)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14902, ZDI-CAN-14866)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products contains a use after free vulnerability that could be triggered while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14900)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to stack based buffer overflow while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-14845)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-14841)
A vulnerability has been identified in JT Utilities (All versions < V13.1.1.0), JTTK (All versions < V11.1.1.0). JTTK library in affected products is vulnerable to an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14829)
A vulnerability has been identified in POWER METER SICAM Q100 (All versions < V2.41), POWER METER SICAM Q100 (All versions < V2.41), POWER METER SICAM Q100 (All versions < V2.41), POWER METER SICAM Q100 (All versions < V2.41). The affected firmware contains a buffer overflow vulnerability in the web application that could allow a remote attacker with engineer or admin priviliges to potentially perform remote code execution.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Image.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted TIF files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15111)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The VCRUNTIME140.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted CGM files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15109)
A vulnerability has been identified in JT Open (All versions < V11.1.1.0), JT Utilities (All versions < V13.1.1.0), Solid Edge (All versions < V2023). The Jt1001.dll contains a use-after-free vulnerability that could be triggered while parsing specially crafted JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-15057, ZDI-CAN-19081)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The DL180pdfl.dll contains an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15103)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Jt1001.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15102)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Jt1001.dll is vulnerable to an out of bounds read past the end of an allocated buffer while parsing specially crafted JT files. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-15101)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing TIFF files. An attacker could leverage this vulnerability to leak information in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing TIFF files. An attacker could leverage this vulnerability to leak information in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing TIFF files. An attacker could leverage this vulnerability to leak information in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll contains an off-by-one error in the heap while parsing specially crafted TIFF files. This could allow an attacker to cause a denial-of-service condition.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll contains an out of bounds write past the end of an allocated structure while parsing specially crafted TIFF files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll contains an out of bounds write past the end of an allocated structure while parsing specially crafted TIFF files. This could allow an attacker to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll is vulnerable to an out of bounds read past the end of an allocated buffer when parsing TIFF files. An attacker could leverage this vulnerability to leak information in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The Tiff_Loader.dll is vulnerable to use of uninitialized memory while parsing user supplied TIFF files. This could allow an attacker to cause a denial-of-service condition.
A vulnerability has been identified in JT Open (All versions < V11.1.1.0), JT Utilities (All versions < V13.1.1.0), Solid Edge (All versions < V2023). The Jt1001.dll contains an out of bounds write past the end of an allocated structure while parsing specially crafted JT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-15058, ZDI-CAN-19076, ZDI-CAN-19077)
A vulnerability has been identified in JT2Go (All versions < V13.2.0.5), Teamcenter Visualization (All versions < V13.2.0.5). The DL180pdfl.dll contains an out of bounds write past the end of an allocated structure while parsing specially crafted PDF files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-14974)
A vulnerability has been identified in Simcenter STAR-CCM+ Viewer (All versions < 2021.3.1). The starview+.exe application lacks proper validation of user-supplied data when parsing scene files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in ModelSim Simulation (All versions), Questa Simulation (All versions). The RSA white-box implementation in affected applications insufficiently protects the built-in private keys that are required to decrypt electronic intellectual property (IP) data in accordance with the IEEE 1735 recommended practice. This could allow a sophisticated attacker to discover the keys, bypassing the protection intended by the IEEE 1735 recommended practice.
A vulnerability has been identified in SIMATIC eaSie PCS 7 Skill Package (All versions < V21.00 SP3). When downloading files, the affected systems do not properly neutralize special elements within the pathname. An attacker could then cause the pathname to resolve to a location outside of the restricted directory on the server and read unexpected critical files. The affected file download function is disabled by default.
A vulnerability has been identified in Teamcenter Active Workspace V4.3 (All versions < V4.3.11), Teamcenter Active Workspace V5.0 (All versions < V5.0.10), Teamcenter Active Workspace V5.1 (All versions < V5.1.6), Teamcenter Active Workspace V5.2 (All versions < V5.2.3). The application contains an unsafe unzipping pattern that could lead to a zip path traversal attack. This could allow and attacker to execute a remote shell with admin rights.
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.
A flaw was found in c-ares library, where a missing input validation check of host names returned by DNS (Domain Name Servers) can lead to output of wrong hostnames which might potentially lead to Domain Hijacking. The highest threat from this vulnerability is to confidentiality and integrity as well as system availability.
An Out-of-Bounds Write vulnerability exists when reading a DXF or DWG file using Open Design Alliance Drawings SDK before 2022.11. The specific issue exists within the parsing of DXF and DWG files. Crafted data in a DXF or DWG file (an invalid number of properties) can trigger a write operation past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
In WIBU CodeMeter Runtime before 7.30a, creating a crafted CmDongles symbolic link will overwrite the linked file without checking permissions.
The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE.
A vulnerability has been identified in Siveillance Video DLNA Server (2019 R1), Siveillance Video DLNA Server (2019 R2), Siveillance Video DLNA Server (2019 R3), Siveillance Video DLNA Server (2020 R1), Siveillance Video DLNA Server (2020 R2), Siveillance Video DLNA Server (2020 R3), Siveillance Video DLNA Server (2021 R1). The affected application contains a path traversal vulnerability that could allow to read arbitrary files on the server that are outside the application’s web document directory. An unauthenticated remote attacker could exploit this issue to access sensitive information for subsequent attacks.
A vulnerability has been identified in Climatix POL909 (AWB module) (All versions < V11.42), Climatix POL909 (AWM module) (All versions < V11.34). The web server of affected devices transmits data without TLS encryption. This could allow an unauthenticated remote attacker in a man-in-the-middle position to read sensitive data, such as administrator credentials, or modify data in transit.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3 UC04), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP1), SIMATIC WinCC V15 and earlier (All versions < V15 SP1 Update 7), SIMATIC WinCC V16 (All versions < V16 Update 5), SIMATIC WinCC V17 (All versions < V17 Update 2), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 19), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 5). The affected systems store sensitive information in log files. An attacker with access to the log files could publicly expose the information or reuse it to develop further attacks on the system.
A vulnerability has been identified in OpenPCS 7 V8.2 (All versions), OpenPCS 7 V9.0 (All versions < V9.0 Upd4), OpenPCS 7 V9.1 (All versions), SIMATIC BATCH V8.2 (All versions), SIMATIC BATCH V9.0 (All versions), SIMATIC BATCH V9.1 (All versions), SIMATIC NET PC Software V14 (All versions), SIMATIC NET PC Software V15 (All versions), SIMATIC NET PC Software V16 (All versions < V16 Update 6), SIMATIC NET PC Software V17 (All versions < V17 SP1), SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3 UC04), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP1), SIMATIC Route Control V8.2 (All versions), SIMATIC Route Control V9.0 (All versions), SIMATIC Route Control V9.1 (All versions), SIMATIC WinCC V15 and earlier (All versions < V15 SP1 Update 7), SIMATIC WinCC V16 (All versions < V16 Update 5), SIMATIC WinCC V17 (All versions < V17 Update 2), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 19), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 5). When downloading files, the affected systems do not properly neutralize special elements within the pathname. An attacker could then cause the pathname to resolve to a location outside of the restricted directory on the server and read unexpected critical files.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3 UC04), SIMATIC PCS 7 V9.1 (All versions < V9.1 SP1), SIMATIC WinCC V15 and earlier (All versions < V15 SP1 Update 7), SIMATIC WinCC V16 (All versions < V16 Update 5), SIMATIC WinCC V17 (All versions < V17 Update 2), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 19), SIMATIC WinCC V7.5 (All versions < V7.5 SP2 Update 5). Legitimate file operations on the web server of the affected systems do not properly neutralize special elements within the pathname. An attacker could then cause the pathname to resolve to a location outside of the restricted directory on the server and read, write or delete unexpected critical files.
A vulnerability has been identified in SENTRON powermanager V3 (All versions). The affected application assigns improper access rights to a specific folder containing configuration files. This could allow an authenticated local attacker to inject arbitrary code and escalate privileges.
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), PLUSCONTROL 1st Gen (All versions), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), SIMOTICS CONNECT 400 (All versions < V1.0.0.0). The total length of an TCP payload (set in the IP header) is unchecked. This may lead to various side effects, including Information Leak and Denial-of-Service conditions, depending on the network buffer organization in memory. (FSMD-2021-0017)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), PLUSCONTROL 1st Gen (All versions), SIMOTICS CONNECT 400 (All versions < V0.5.0.0). Malformed TCP packets with a corrupted SACK option leads to Information Leaks and Denial-of-Service conditions. (FSMD-2021-0015)
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.4), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.19), APOGEE PXC Modular (BACnet) (All versions < V3.5.4), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.19), Desigo PXC00-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC00-U (All versions >= V2.3 and < V6.30.016), Desigo PXC001-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC100-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC12-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC128-U (All versions >= V2.3 and < V6.30.016), Desigo PXC200-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC36.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC50-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC64-U (All versions >= V2.3 and < V6.30.016), Desigo PXM20-E (All versions >= V2.3 and < V6.30.016), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus Source Code (All versions), TALON TC Compact (BACnet) (All versions < V3.5.4), TALON TC Modular (BACnet) (All versions < V3.5.4). FTP server does not properly validate the length of the “MKD/XMKD” command, leading to stack-based buffer overflows. This may result in Denial-of-Service conditions and Remote Code Execution. (FSMD-2021-0018)
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.4), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.19), APOGEE PXC Modular (BACnet) (All versions < V3.5.4), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.19), Desigo PXC00-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC00-U (All versions >= V2.3 and < V6.30.016), Desigo PXC001-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC100-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC12-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC128-U (All versions >= V2.3 and < V6.30.016), Desigo PXC200-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC36.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC50-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC64-U (All versions >= V2.3 and < V6.30.016), Desigo PXM20-E (All versions >= V2.3 and < V6.30.016), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus Source Code (All versions), TALON TC Compact (BACnet) (All versions < V3.5.4), TALON TC Modular (BACnet) (All versions < V3.5.4). FTP server does not properly validate the length of the “PWD/XPWD” command, leading to stack-based buffer overflows. This may result in Denial-of-Service conditions and Remote Code Execution. (FSMD-2021-0016)
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.4), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.19), APOGEE PXC Modular (BACnet) (All versions < V3.5.4), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.19), Desigo PXC00-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC00-U (All versions >= V2.3 and < V6.30.016), Desigo PXC001-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC100-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC12-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC128-U (All versions >= V2.3 and < V6.30.016), Desigo PXC200-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC36.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC50-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC64-U (All versions >= V2.3 and < V6.30.016), Desigo PXM20-E (All versions >= V2.3 and < V6.30.016), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus Source Code (All versions), TALON TC Compact (BACnet) (All versions < V3.5.4), TALON TC Modular (BACnet) (All versions < V3.5.4). FTP server does not properly validate the length of the “USER” command, leading to stack-based buffer overflows. This may result in Denial-of-Service conditions and Remote Code Execution. (FSMD-2021-0010)
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.4), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.19), APOGEE PXC Modular (BACnet) (All versions < V3.5.4), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.19), Desigo PXC00-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC00-U (All versions >= V2.3 and < V6.30.016), Desigo PXC001-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC100-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC12-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC128-U (All versions >= V2.3 and < V6.30.016), Desigo PXC200-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC36.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC50-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC64-U (All versions >= V2.3 and < V6.30.016), Desigo PXM20-E (All versions >= V2.3 and < V6.30.016), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus ReadyStart V4 (All versions < V4.1.1), Nucleus Source Code (All versions), PLUSCONTROL 1st Gen (All versions), TALON TC Compact (BACnet) (All versions < V3.5.4), TALON TC Modular (BACnet) (All versions < V3.5.4). TFTP server application allows for reading the contents of the TFTP memory buffer via sending malformed TFTP commands. (FSMD-2021-0009)
A vulnerability has been identified in APOGEE MBC (PPC) (BACnet) (All versions), APOGEE MBC (PPC) (P2 Ethernet) (All versions), APOGEE MEC (PPC) (BACnet) (All versions), APOGEE MEC (PPC) (P2 Ethernet) (All versions), APOGEE PXC Compact (BACnet) (All versions < V3.5.4), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.19), APOGEE PXC Modular (BACnet) (All versions < V3.5.4), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.19), Capital VSTAR (All versions with enabled Ethernet options), Desigo PXC00-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC00-U (All versions >= V2.3 and < V6.30.016), Desigo PXC001-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC100-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC12-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC128-U (All versions >= V2.3 and < V6.30.016), Desigo PXC200-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC22.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC36.1-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC50-E.D (All versions >= V2.3 and < V6.30.016), Desigo PXC64-U (All versions >= V2.3 and < V6.30.016), Desigo PXM20-E (All versions >= V2.3 and < V6.30.016), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus Source Code (All versions), TALON TC Compact (BACnet) (All versions < V3.5.4), TALON TC Modular (BACnet) (All versions < V3.5.4). The DHCP client application assumes that the data supplied with the “Hostname” DHCP option is NULL terminated. In cases when global hostname variable is not defined, this may lead to Out-of-bound reads, writes, and Denial-of-service conditions. (FSMD-2021-0014)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303). When processing a DHCP ACK message, the DHCP client application does not validate the length of the Vendor option(s), leading to Denial-of-Service conditions. (FSMD-2021-0013)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303). The DHCP client application does not validate the length of the Domain Name Server IP option(s) (0x06) when processing DHCP ACK packets. This may lead to Denial-of-Service conditions. (FSMD-2021-0011)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303). When processing a DHCP OFFER message, the DHCP client application does not validate the length of the Vendor option(s), leading to Denial-of-Service conditions. (FSMD-2021-0008)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), PLUSCONTROL 1st Gen (All versions), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), SIMOTICS CONNECT 400 (All versions < V1.0.0.0). The total length of an ICMP payload (set in the IP header) is unchecked. This may lead to various side effects, including Information Leak and Denial-of-Service conditions, depending on the network buffer organization in memory. (FSMD-2021-0007)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), PLUSCONTROL 1st Gen (All versions). The total length of an UDP payload (set in the IP header) is unchecked. This may lead to various side effects, including Information Leak and Denial-of-Service conditions, depending on a user-defined applications that runs on top of the UDP protocol. (FSMD-2021-0006)
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), PLUSCONTROL 1st Gen (All versions), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), SIMOTICS CONNECT 400 (All versions < V1.0.0.0). ICMP echo packets with fake IP options allow sending ICMP echo reply messages to arbitrary hosts on the network. (FSMD-2021-0004)
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.12). The affected application does not properly handle the import of large configuration files. A local attacker could import a specially crafted file which could lead to a denial-of-service condition of the application service.
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.12). The affected application writes sensitive data, such as database credentials in configuration files. A local attacker with access to the configuration files could use this information to launch further attacks.
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.12). The affected application writes sensitive data, such as usernames and passwords in log files. A local attacker with access to the log files could use this information to launch further attacks.
In BIND 9.3.0 -> 9.11.35, 9.12.0 -> 9.16.21, and versions 9.9.3-S1 -> 9.11.35-S1 and 9.16.8-S1 -> 9.16.21-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.18 of the BIND 9.17 development branch, exploitation of broken authoritative servers using a flaw in response processing can cause degradation in BIND resolver performance. The way the lame cache is currently designed makes it possible for its internal data structures to grow almost infinitely, which may cause significant delays in client query processing.
The CivetWeb web library does not validate uploaded filepaths when running on an OS other than Windows, when using the built-in HTTP form-based file upload mechanism, via the mg_handle_form_request API. Web applications that use the file upload form handler, and use parts of the user-controlled filename in the output path, are susceptible to directory traversal
The in-memory certificate cache in strongSwan before 5.9.4 has a remote integer overflow upon receiving many requests with different certificates to fill the cache and later trigger the replacement of cache entries. The code attempts to select a less-often-used cache entry by means of a random number generator, but this is not done correctly. Remote code execution might be a slight possibility.
The gmp plugin in strongSwan before 5.9.4 has a remote integer overflow via a crafted certificate with an RSASSA-PSS signature. For example, this can be triggered by an unrelated self-signed CA certificate sent by an initiator. Remote code execution cannot occur.
A remote denial of service vulnerability was discovered in Aruba Instant version(s): Aruba Instant 6.5.x.x: 6.5.4.18 and below; Aruba Instant 8.5.x.x: 8.5.0.10 and below; Aruba Instant 8.6.x.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant (IAP) that address this security vulnerability.
A remote unauthorized read access to files vulnerability was discovered in Aruba Instant version(s): 6.4.x.x: 6.4.4.8-4.2.4.18 and below; Aruba Instant 6.5.x.x: 6.5.4.19 and below; Aruba Instant 8.5.x.x: 8.5.0.12 and below; Aruba Instant 8.6.x.x: 8.6.0.11 and below; Aruba Instant 8.7.x.x: 8.7.1.3 and below; Aruba Instant 8.8.x.x: 8.8.0.0 and below. Aruba has released patches for Aruba Instant (IAP) that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in HPE Aruba Instant (IAP) version(s): Aruba Instant 6.4.x.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x.x: 6.5.4.18 and below; Aruba Instant 8.5.x.x: 8.5.0.11 and below; Aruba Instant 8.6.x.x: 8.6.0.6 and below; Aruba Instant 8.7.x.x: 8.7.1.0 and below. Aruba has released patches for Aruba Instant (IAP) that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in HPE Aruba Instant (IAP) version(s): Aruba Instant 6.4.x.x: 6.4.4.8-4.2.4.18 and below; Aruba Instant 6.5.x.x: 6.5.4.20 and below; Aruba Instant 8.5.x.x: 8.5.0.12 and below; Aruba Instant 8.6.x.x: 8.6.0.11 and below; Aruba Instant 8.7.x.x: 8.7.1.3 and below. Aruba has released patches for Aruba Instant (IAP) that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in HPE Aruba Instant (IAP) version(s): 6.4.x.x: 6.4.4.8-4.2.4.18 and below; Aruba Instant 6.5.x.x: 6.5.4.20 and below; Aruba Instant 8.5.x.x: 8.5.0.12 and below; Aruba Instant 8.6.x.x: 8.6.0.11 and below; Aruba Instant 8.7.x.x: 8.7.1.3 and below. Aruba has released patches for Aruba Instant (IAP) that address this security vulnerability.
A remote buffer overflow vulnerability was discovered in HPE Aruba Instant (IAP) version(s): Aruba Instant 8.7.x.x: 8.7.0.0 through 8.7.1.2. Aruba has released patches for Aruba Instant (IAP) that address this security vulnerability.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.14.1), RUGGEDCOM ROX RX1400 (All versions < V2.14.1), RUGGEDCOM ROX RX1500 (All versions < V2.14.1), RUGGEDCOM ROX RX1501 (All versions < V2.14.1), RUGGEDCOM ROX RX1510 (All versions < V2.14.1), RUGGEDCOM ROX RX1511 (All versions < V2.14.1), RUGGEDCOM ROX RX1512 (All versions < V2.14.1), RUGGEDCOM ROX RX1524 (All versions < V2.14.1), RUGGEDCOM ROX RX1536 (All versions < V2.14.1), RUGGEDCOM ROX RX5000 (All versions < V2.14.1). Affected devices write crashdumps without checking if enough space is available on the filesystem. Once the crashdump fills the entire root filesystem, affected devices fail to boot successfully. An attacker can leverage this vulnerability to cause a permanent Denial-of-Service.
A vulnerability has been identified in SINUMERIK 808D (All versions), SINUMERIK 828D (All versions < V4.95). Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial-of-service in the device.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). A privileged authenticated attacker could execute arbitrary commands in the local database by sending crafted requests to the webserver of the affected application.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). An authenticated attacker that is able to import firmware containers to an affected system could execute arbitrary commands in the local database.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). The affected system allows to upload JSON objects that are deserialized to JAVA objects. Due to insecure deserialization of user-supplied content by the affected software, a privileged attacker could exploit this vulnerability by sending a crafted serialized Java object. An exploit could allow the attacker to execute arbitrary code on the device with root privileges.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). An authenticated attacker could download the user profile of any user. With this, the attacker could leak confidential information of any user in the affected system.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). The affected system allows to download arbitrary files under a user controlled path and does not correctly check if the relative path is still within the intended target directory.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). The affected system allows to delete arbitrary files or directories under a user controlled path and does not correctly check if the relative path is still within the intended target directory.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). The affected system contains an Arbitrary File Deletion vulnerability that possibly allows to delete an arbitrary file or directory under a user controlled path.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). An authenticated attacker could change the user profile of any user without proper authorization. With this, the attacker could change the password of any user in the affected system.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). The affected system has a Path Traversal vulnerability when exporting a firmware container. With this a privileged authenticated attacker could create arbitrary files on an affected system.
A vulnerability has been identified in SIMATIC Process Historian 2013 and earlier (All versions), SIMATIC Process Historian 2014 (All versions < SP3 Update 6), SIMATIC Process Historian 2019 (All versions), SIMATIC Process Historian 2020 (All versions). An interface in the software that is used for critical functionalities lacks authentication, which could allow a malicious user to maliciously insert, modify or delete data.
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior.
A vulnerability exists in SMM (System Management Mode) branch that registers a SWSMI handler that does not sufficiently check or validate the allocated buffer pointer(QWORD values for CommBuffer). This can be used by an attacker to corrupt data in SMRAM memory and even lead to arbitrary code execution.
When curl >= 7.20.0 and <= 7.78.0 connects to an IMAP or POP3 server to retrieve data using STARTTLS to upgrade to TLS security, the server can respond and send back multiple responses at once that curl caches. curl would then upgrade to TLS but not flush the in-queue of cached responses but instead continue using and trustingthe responses it got *before* the TLS handshake as if they were authenticated.Using this flaw, it allows a Man-In-The-Middle attacker to first inject the fake responses, then pass-through the TLS traffic from the legitimate server and trick curl into sending data back to the user thinking the attacker's injected data comes from the TLS-protected server.
A user can tell curl >= 7.20.0 and <= 7.78.0 to require a successful upgrade to TLS when speaking to an IMAP, POP3 or FTP server (`--ssl-reqd` on the command line or`CURLOPT_USE_SSL` set to `CURLUSESSL_CONTROL` or `CURLUSESSL_ALL` withlibcurl). This requirement could be bypassed if the server would return a properly crafted but perfectly legitimate response.This flaw would then make curl silently continue its operations **withoutTLS** contrary to the instructions and expectations, exposing possibly sensitive data in clear text over the network.
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13776).
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13773).
A vulnerability has been identified in NX 1953 Series (All versions < V1973.3700), NX 1980 Series (All versions < V1988), Solid Edge SE2021 (All versions < SE2021MP8). The affected application is vulnerable to information disclosure by unexpected access to an uninitialized pointer while parsing user-supplied OBJ files. An attacker could leverage this vulnerability to leak information from unexpected memory locations (ZDI-CAN-13770).
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13789).
A vulnerability has been identified in Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13778).
A vulnerability has been identified in NX 1953 Series (All versions < V1973.3700), NX 1980 Series (All versions < V1988), Solid Edge SE2021 (All versions < SE2021MP8). The affected application contains a use-after-free vulnerability while parsing OBJ files. An attacker could leverage this vulnerability to execute code in the context of the current process (ZDI-CAN-13771).
A vulnerability has been identified in NX 1980 Series (All versions < V1984), Solid Edge SE2021 (All versions < SE2021MP8). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing JT files. An attacker could leverage this vulnerability to leak information in the context of the current process (ZDI-CAN-13703).
A vulnerability has been identified in NX 1980 Series (All versions < V1984), Solid Edge SE2021 (All versions < SE2021MP8). The affected application is vulnerable to an out of bounds read past the end of an allocated buffer when parsing JT files. An attacker could leverage this vulnerability to leak information in the context of the current process (ZDI-CAN-13565).
When sending data to an MQTT server, libcurl <= 7.73.0 and 7.78.0 could in some circumstances erroneously keep a pointer to an already freed memory area and both use that again in a subsequent call to send data and also free it *again*.
A crafted request uri-path can cause mod_proxy to forward the request to an origin server choosen by the remote user. This issue affects Apache HTTP Server 2.4.48 and earlier.
ap_escape_quotes() may write beyond the end of a buffer when given malicious input. No included modules pass untrusted data to these functions, but third-party / external modules may. This issue affects Apache HTTP Server 2.4.48 and earlier.
Malformed requests may cause the server to dereference a NULL pointer. This issue affects Apache HTTP Server 2.4.48 and earlier.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.8), Teamcenter V13.0 (All versions < V13.0.0.7), Teamcenter V13.1 (All versions < V13.1.0.5), Teamcenter V13.2 (All versions < 13.2.0.2). The application contains a XML External Entity Injection (XXE) vulnerability. This could allow an attacker to view files on the application server filesystem.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.8), Teamcenter V13.0 (All versions < V13.0.0.7), Teamcenter V13.1 (All versions < V13.1.0.5), Teamcenter V13.2 (All versions < 13.2.0.2). The affected application contains Insecure Direct Object Reference (IDOR) vulnerability that allows an attacker to use user-supplied input to access objects directly.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.8), Teamcenter V13.0 (All versions < V13.0.0.7), Teamcenter V13.1 (All versions < V13.1.0.5), Teamcenter V13.2 (All versions < 13.2.0.2). The "surrogate" functionality on the user profile of the application does not perform sufficient access control that could lead to an account takeover. Any profile on the application can perform this attack and access any other user assigned tasks via the "inbox/surrogate tasks".
A vulnerability has been identified in SIPROTEC 5 relays with CPU variants CP050 (All versions < V8.80), SIPROTEC 5 relays with CPU variants CP100 (All versions < V8.80), SIPROTEC 5 relays with CPU variants CP300 (All versions < V8.80). Received webpackets are not properly processed. An unauthenticated remote attacker with access to any of the Ethernet interfaces could send specially crafted packets to force a restart of the target device.
A vulnerability has been identified in NX 1980 Series (All versions < V1984), Solid Edge SE2021 (All versions < SE2021MP8). The plmxmlAdapterIFC.dll contains an out-of-bounds read while parsing user supplied IFC files which could result in a read past the end of an allocated buffer. This could allow an attacker to cause a denial-of-service condition or read sensitive information from memory locations.
A vulnerability has been identified in NX 1980 Series (All versions < V1984), Solid Edge SE2021 (All versions < SE2021MP8). The IFC adapter in affected application contains a use-after-free vulnerability that could be triggered while parsing user-supplied IFC files. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP1). The web interface of affected devices is vulnerable to a Cross-Site Request Forgery (CSRF) attack. This could allow an attacker to manipulate the SINEC NMS configuration by tricking an unsuspecting user with administrative privileges to click on a malicious link.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP1). An attacker with access to the webserver of an affected system could download arbitrary files from the underlying filesystem by sending a specially crafted HTTP request.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). An unauthenticated attacker in the same network of the affected system could manipulate certain parameters and set a valid user of the affected software as invalid (or vice-versa).
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). The affected software has an information disclosure vulnerability that could allow an attacker to retrieve a list of network devices a known user can manage.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). An unauthenticated attacker in the same network of the affected system could brute force the usernames from the affected software.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). The affected software has an information disclosure vulnerability that could allow an attacker to retrieve VPN connection for a known user.
A vulnerability has been identified in LOGO! CMR2020 (All versions < V2.2), LOGO! CMR2040 (All versions < V2.2), SIMATIC RTU3010C (All versions < V4.0.9), SIMATIC RTU3030C (All versions < V4.0.9), SIMATIC RTU3031C (All versions < V4.0.9), SIMATIC RTU3041C (All versions < V4.0.9). The underlying TCP/IP stack does not properly calculate the random numbers used as ISN (Initial Sequence Numbers). An adjacent attacker with network access to the LAN interface could interfere with traffic, spoof the connection and gain access to sensitive information.
A vulnerability has been identified in Industrial Edge Management (All versions < V1.3). An unauthenticated attacker could change the the password of any user in the system under certain circumstances. With this an attacker could impersonate any valid user on an affected system.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). The affected software allows sending send-to-sleep notifications to the managed devices. An unauthenticated attacker in the same network of the affected system can abuse these notifications to cause a Denial-of-Service condition in the managed devices.
A vulnerability has been identified in Cerberus DMS V4.0 (All versions), Cerberus DMS V4.1 (All versions), Cerberus DMS V4.2 (All versions), Cerberus DMS V5.0 (All versions < v5.0 QU1), Desigo CC Compact V4.0 (All versions), Desigo CC Compact V4.1 (All versions), Desigo CC Compact V4.2 (All versions), Desigo CC Compact V5.0 (All versions < V5.0 QU1), Desigo CC V4.0 (All versions), Desigo CC V4.1 (All versions), Desigo CC V4.2 (All versions), Desigo CC V5.0 (All versions < V5.0 QU1). The application deserialises untrusted data without sufficient validations, that could result in an arbitrary deserialization. This could allow an unauthenticated attacker to execute code in the affected system. The CCOM communication component used for Windows App / Click-Once and IE Web / XBAP client connectivity are affected by the vulnerability.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0 SP2). The status provided by the syslog clients managed by the affected software can be manipulated by an unauthenticated attacker in the same network of the affected system.
A vulnerability has been identified in Simcenter Femap V2020.2 (All versions), Simcenter Femap V2021.1 (All versions). The femap.exe application lacks proper validation of user-supplied data when parsing modfem files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-14260)
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.14.1), RUGGEDCOM ROX RX1400 (All versions < V2.14.1), RUGGEDCOM ROX RX1500 (All versions < V2.14.1), RUGGEDCOM ROX RX1501 (All versions < V2.14.1), RUGGEDCOM ROX RX1510 (All versions < V2.14.1), RUGGEDCOM ROX RX1511 (All versions < V2.14.1), RUGGEDCOM ROX RX1512 (All versions < V2.14.1), RUGGEDCOM ROX RX1524 (All versions < V2.14.1), RUGGEDCOM ROX RX1536 (All versions < V2.14.1), RUGGEDCOM ROX RX5000 (All versions < V2.14.1). The affected devices do not properly handle permissions to traverse the file system. If exploited, an attacker could gain access to an overview of the complete file system on the affected devices.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.14.1), RUGGEDCOM ROX RX1400 (All versions < V2.14.1), RUGGEDCOM ROX RX1500 (All versions < V2.14.1), RUGGEDCOM ROX RX1501 (All versions < V2.14.1), RUGGEDCOM ROX RX1510 (All versions < V2.14.1), RUGGEDCOM ROX RX1511 (All versions < V2.14.1), RUGGEDCOM ROX RX1512 (All versions < V2.14.1), RUGGEDCOM ROX RX1524 (All versions < V2.14.1), RUGGEDCOM ROX RX1536 (All versions < V2.14.1), RUGGEDCOM ROX RX5000 (All versions < V2.14.1). The affected devices have a privilege escalation vulnerability, if exploited, an attacker could gain root user access.
A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.14.1), RUGGEDCOM ROX RX1400 (All versions < V2.14.1), RUGGEDCOM ROX RX1500 (All versions < V2.14.1), RUGGEDCOM ROX RX1501 (All versions < V2.14.1), RUGGEDCOM ROX RX1510 (All versions < V2.14.1), RUGGEDCOM ROX RX1511 (All versions < V2.14.1), RUGGEDCOM ROX RX1512 (All versions < V2.14.1), RUGGEDCOM ROX RX1524 (All versions < V2.14.1), RUGGEDCOM ROX RX1536 (All versions < V2.14.1), RUGGEDCOM ROX RX5000 (All versions < V2.14.1). The command line interface of affected devices insufficiently restrict file read and write operations for low privileged users. This could allow an authenticated remote attacker to escalate privileges and gain root access to the device.
A vulnerability has been identified in SIMATIC CP 343-1 (incl. SIPLUS variants) (All versions), SIMATIC CP 343-1 Advanced (incl. SIPLUS variants) (All versions), SIMATIC CP 343-1 ERPC (All versions), SIMATIC CP 343-1 Lean (incl. SIPLUS variants) (All versions), SIMATIC CP 443-1 (All versions < V3.3), SIMATIC CP 443-1 (All versions < V3.3), SIMATIC CP 443-1 Advanced (All versions < V3.3), SIPLUS NET CP 443-1 (All versions < V3.3), SIPLUS NET CP 443-1 Advanced (All versions < V3.3). Sending a specially crafted packet to port 102/tcp of an affected device could cause a denial of service condition. A restart is needed to restore normal operations.
A vulnerability has been identified in SIPROTEC 5 relays with CPU variants CP050 (All versions < V8.80), SIPROTEC 5 relays with CPU variants CP100 (All versions < V8.80), SIPROTEC 5 relays with CPU variants CP300 (All versions < V8.80). Specially crafted packets sent to port 4443/tcp could cause a Denial-of-Service condition.
A vulnerability has been identified in SIPROTEC 5 relays with CPU variants CP050 (All versions < V8.80), SIPROTEC 5 relays with CPU variants CP100 (All versions < V8.80), SIPROTEC 5 relays with CPU variants CP300 (All versions < V8.80). Specially crafted packets sent to port 4443/tcp could cause a Denial-of-Service condition or potential remote code execution.
A vulnerability has been identified in SIMATIC CP 1543-1 (incl. SIPLUS variants) (All versions < V3.0), SIMATIC CP 1545-1 (All versions < V1.1). An attacker with access to the subnet of the affected device could retrieve sensitive information stored in cleartext.
A vulnerability has been identified in Desigo CC (All versions with OIS Extension Module), GMA-Manager (All versions with OIS running on Debian 9 or earlier), Operation Scheduler (All versions with OIS running on Debian 9 or earlier), Siveillance Control (All versions with OIS running on Debian 9 or earlier), Siveillance Control Pro (All versions). The affected application incorrectly neutralizes special elements in a specific HTTP GET request which could lead to command injection. An unauthenticated remote attacker could exploit this vulnerability to execute arbitrary code on the system with root privileges.
A vulnerability has been identified in APOGEE MBC (PPC) (P2 Ethernet) (All versions >= V2.6.3), APOGEE MEC (PPC) (P2 Ethernet) (All versions >= V2.6.3), APOGEE PXC Compact (BACnet) (All versions < V3.5.3), APOGEE PXC Compact (P2 Ethernet) (All versions >= V2.8), APOGEE PXC Modular (BACnet) (All versions < V3.5.3), APOGEE PXC Modular (P2 Ethernet) (All versions >= V2.8), TALON TC Compact (BACnet) (All versions < V3.5.3), TALON TC Modular (BACnet) (All versions < V3.5.3). The web server of affected devices lacks proper bounds checking when parsing the Host parameter in HTTP requests, which could lead to a buffer overflow. An unauthenticated remote attacker could exploit this vulnerability to execute arbitrary code on the device with root privileges.
A vulnerability has been identified in SINEMA Server (All versions < V14 SP3). Missing authentication for functionality that requires administrative user identity could allow an attacker to obtain encoded system configuration backup files. This is only possible through network access to the affected system, and successful exploitation requires no system privileges.
A remote path traversal vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.7.1.1, 8.6.0.7, 8.5.0.11, 8.3.0.16. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A local path traversal vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.0-2.2.0.4; Prior to 8.7.1.1, 8.6.0.7, 8.5.0.12, 8.3.0.16. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote path traversal vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.0-2.2.0.4; Prior to 8.7.1.3, 8.6.0.9, 8.5.0.12, 8.3.0.16, 6.5.4.19, 6.4.4.25. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote path traversal vulnerability was discovered in Aruba Operating System Software version(s): Prior to 8.8.0.1, 8.7.1.4, 8.6.0.11, 8.5.0.13. Aruba has released patches for ArubaOS that address this security vulnerability.
A remote cross-site request forgery (csrf) vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.8.0.1, 8.7.1.2, 8.6.0.8, 8.5.0.12, 8.3.0.15. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba Operating System Software version(s): Prior to 8.7.1.2, 8.6.0.8, 8.5.0.12, 8.3.0.16. Aruba has released patches for ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba Operating System Software version(s): Prior to 8.7.1.2, 8.6.0.8, 8.5.0.12, 8.3.0.16. Aruba has released patches for ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.7.1.4, 8.6.0.9, 8.5.0.13, 8.3.0.16, 6.5.4.20, 6.4.4.25. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.7.1.4, 8.6.0.9, 8.5.0.13, 8.3.0.16, 6.5.4.20, 6.4.4.25. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.7.1.4, 8.6.0.9, 8.5.0.13, 8.3.0.16, 6.5.4.20, 6.4.4.25. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.6; Prior to 8.7.1.4, 8.6.0.7, 8.5.0.12, 8.3.0.16. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote arbitrary command execution vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.6; Prior to 8.7.1.4, 8.6.0.7, 8.5.0.12, 8.3.0.16. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote buffer overflow vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.7.1.2, 8.6.0.8, 8.5.0.12, 8.3.0.15. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote cross-site request forgery (csrf) vulnerability was discovered in Aruba Operating System Software version(s): 6.x.x.x: all versions, 8.x.x.x: all versions prior to 8.8.0.0. Aruba has released patches for ArubaOS that address this security vulnerability.
`@npmcli/arborist`, the library that calculates dependency trees and manages the node_modules folder hierarchy for the npm command line interface, aims to guarantee that package dependency contracts will be met, and the extraction of package contents will always be performed into the expected folder. This is accomplished by extracting package contents into a project's `node_modules` folder. If the `node_modules` folder of the root project or any of its dependencies is somehow replaced with a symbolic link, it could allow Arborist to write package dependencies to any arbitrary location on the file system. Note that symbolic links contained within package artifact contents are filtered out, so another means of creating a `node_modules` symbolic link would have to be employed. 1. A `preinstall` script could replace `node_modules` with a symlink. (This is prevented by using `--ignore-scripts`.) 2. An attacker could supply the target with a git repository, instructing them to run `npm install --ignore-scripts` in the root. This may be successful, because `npm install --ignore-scripts` is typically not capable of making changes outside of the project directory, so it may be deemed safe. This is patched in @npmcli/arborist 2.8.2 which is included in npm v7.20.7 and above. For more information including workarounds please see the referenced GHSA-gmw6-94gg-2rc2.
`@npmcli/arborist`, the library that calculates dependency trees and manages the `node_modules` folder hierarchy for the npm command line interface, aims to guarantee that package dependency contracts will be met, and the extraction of package contents will always be performed into the expected folder. This is, in part, accomplished by resolving dependency specifiers defined in `package.json` manifests for dependencies with a specific name, and nesting folders to resolve conflicting dependencies. When multiple dependencies differ only in the case of their name, Arborist's internal data structure saw them as separate items that could coexist within the same level in the `node_modules` hierarchy. However, on case-insensitive file systems (such as macOS and Windows), this is not the case. Combined with a symlink dependency such as `file:/some/path`, this allowed an attacker to create a situation in which arbitrary contents could be written to any location on the filesystem. For example, a package `pwn-a` could define a dependency in their `package.json` file such as `"foo": "file:/some/path"`. Another package, `pwn-b` could define a dependency such as `FOO: "file:foo.tgz"`. On case-insensitive file systems, if `pwn-a` was installed, and then `pwn-b` was installed afterwards, the contents of `foo.tgz` would be written to `/some/path`, and any existing contents of `/some/path` would be removed. Anyone using npm v7.20.6 or earlier on a case-insensitive filesystem is potentially affected. This is patched in @npmcli/arborist 2.8.2 which is included in npm v7.20.7 and above.
The npm package "tar" (aka node-tar) before versions 4.4.18, 5.0.10, and 6.1.9 has an arbitrary file creation/overwrite and arbitrary code execution vulnerability. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain `..` path portions, and resolving the sanitized paths against the extraction target directory. This logic was insufficient on Windows systems when extracting tar files that contained a path that was not an absolute path, but specified a drive letter different from the extraction target, such as `C:some\path`. If the drive letter does not match the extraction target, for example `D:\extraction\dir`, then the result of `path.resolve(extractionDirectory, entryPath)` would resolve against the current working directory on the `C:` drive, rather than the extraction target directory. Additionally, a `..` portion of the path could occur immediately after the drive letter, such as `C:../foo`, and was not properly sanitized by the logic that checked for `..` within the normalized and split portions of the path. This only affects users of `node-tar` on Windows systems. These issues were addressed in releases 4.4.18, 5.0.10 and 6.1.9. The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. There is no reasonable way to work around this issue without performing the same path normalization procedures that node-tar now does. Users are encouraged to upgrade to the latest patched versions of node-tar, rather than attempt to sanitize paths themselves.
The npm package "tar" (aka node-tar) before versions 4.4.18, 5.0.10, and 6.1.9 has an arbitrary file creation/overwrite and arbitrary code execution vulnerability. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created. This logic was insufficient when extracting tar files that contained both a directory and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive could thus include a directory with one form of the path, followed by a symbolic link with a different string that resolves to the same file system entity, followed by a file using the first form. By first creating a directory, and then replacing that directory with a symlink that had a different apparent name that resolved to the same entry in the filesystem, it was thus possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite. These issues were addressed in releases 4.4.18, 5.0.10 and 6.1.9. The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. If this is not possible, a workaround is available in the referenced GHSA-qq89-hq3f-393p.
The npm package "tar" (aka node-tar) before versions 4.4.16, 5.0.8, and 6.1.7 has an arbitrary file creation/overwrite and arbitrary code execution vulnerability. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created. This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both `\` and `/` characters as path separators, however `\` is a valid filename character on posix systems. By first creating a directory, and then replacing that directory with a symlink, it was thus possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite. Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at `FOO`, followed by a symbolic link named `foo`, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but _not_ from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the `FOO` directory would then be placed in the target of the symbolic link, thinking that the directory had already been created. These issues were addressed in releases 4.4.16, 5.0.8 and 6.1.7. The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. If this is not possible, a workaround is available in the referenced GHSA-9r2w-394v-53qc.
axios is vulnerable to Inefficient Regular Expression Complexity
In OPC Foundation Local Discovery Server (LDS) before 1.04.402.463, remote attackers can cause a denial of service (DoS) by sending carefully crafted messages that lead to Access of a Memory Location After the End of a Buffer.
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y).
An issue was discovered in Mbed TLS before 2.25.0 (and before 2.16.9 LTS and before 2.7.18 LTS). A NULL algorithm parameters entry looks identical to an array of REAL (size zero) and thus the certificate is considered valid. However, if the parameters do not match in any way, then the certificate should be considered invalid.
An issue was discovered in Mbed TLS before 2.25.0 (and before 2.16.9 LTS and before 2.7.18 LTS). The calculations performed by mbedtls_mpi_exp_mod are not limited; thus, supplying overly large parameters could lead to denial of service when generating Diffie-Hellman key pairs.
A vulnerability has been identified in SINEMA Remote Connect Client (All versions < V3.0 SP1). Affected devices allow to modify configuration settings over an unauthenticated channel. This could allow a local attacker to escalate privileges and execute own code on the device.
Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior.
If the Node.js https API was used incorrectly and "undefined" was in passed for the "rejectUnauthorized" parameter, no error was returned and connections to servers with an expired certificate would have been accepted.
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library.
A vulnerability has been identified in Solid Edge SE2021 (All Versions < SE2021MP7). The PSKERNEL.dll library lacks proper validation while parsing user-supplied OBJ files that could cause an out of bounds access to an uninitialized pointer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13775)
A vulnerability has been identified in Solid Edge SE2021 (All Versions < SE2021MP7). The PSKERNEL.dll library in affected application lacks proper validation while parsing user-supplied OBJ files that could lead to a use-after-free condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13777)
A vulnerability has been identified in Solid Edge SE2021 (All Versions < SE2021MP7). An XML external entity injection vulnerability in the underlying XML parser could cause the affected application to disclose arbitrary files to remote attackers by loading a specially crafted xml file.
A vulnerability has been identified in SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (V4.5.0). Affected devices fail to authenticate against configured passwords when provisioned using TIA Portal V13. This could allow an attacker using TIA Portal V13 or later versions to bypass authentication and download arbitrary programs to the PLC. The vulnerability does not occur when TIA Portal V13 SP1 or any later version was used to provision the device.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.2), Teamcenter Visualization (All versions < V13.2.0.2). The plmxmlAdapterSE70.dll library in affected applications lacks proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13405)
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2). The affected application incorrectly neutralizes special elements when creating batch operations which could lead to command injection. An authenticated remote attacker with administrative privileges could exploit this vulnerability to execute arbitrary code on the system with system privileges.
A vulnerability has been identified in JT2Go (All versions < V13.2.0.1), Teamcenter Visualization (All versions < V13.2.0.1). When parsing specially crafted CGM Files, a NULL pointer deference condition could cause the application to crash. The application must be restarted to restore the service. An attacker could leverage this vulnerability to cause a Denial-of-Service condition in the application.
A vulnerability has been identified in Automation License Manager 5 (All versions), Automation License Manager 6 (All versions < V6.0 SP9 Update 2). Sending specially crafted packets to port 4410/tcp of an affected system could lead to extensive memory being consumed and as such could cause a denial-of-service preventing legitimate users from using the system.
A vulnerability has been identified in SIMATIC Drive Controller family (All versions < V2.9.2), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V21.9), SIMATIC S7 PLCSIM Advanced (All versions > V2 < V4), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (Version V4.4), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions > V2.5 < V2.9.2), SIMATIC S7-1500 Software Controller (All versions > V2.5 < V21.9), TIM 1531 IRC (incl. SIPLUS NET variants) (Version V2.1). Due to an incorrect authorization check in the affected component, an attacker could extract information about access protected PLC program variables over port 102/tcp from an affected device when reading multiple attributes at once.
Go before 1.15.15 and 1.16.x before 1.16.7 has a race condition that can lead to a net/http/httputil ReverseProxy panic upon an ErrAbortHandler abort.
libcurl-using applications can ask for a specific client certificate to be used in a transfer. This is done with the `CURLOPT_SSLCERT` option (`--cert` with the command line tool).When libcurl is built to use the macOS native TLS library Secure Transport, an application can ask for the client certificate by name or with a file name - using the same option. If the name exists as a file, it will be used instead of by name.If the appliction runs with a current working directory that is writable by other users (like `/tmp`), a malicious user can create a file name with the same name as the app wants to use by name, and thereby trick the application to use the file based cert instead of the one referred to by name making libcurl send the wrong client certificate in the TLS connection handshake.
curl supports the `-t` command line option, known as `CURLOPT_TELNETOPTIONS`in libcurl. This rarely used option is used to send variable=content pairs toTELNET servers.Due to flaw in the option parser for sending `NEW_ENV` variables, libcurlcould be made to pass on uninitialized data from a stack based buffer to theserver. Therefore potentially revealing sensitive internal information to theserver using a clear-text network protocol.This could happen because curl did not call and use sscanf() correctly whenparsing the string provided by the application.
libcurl keeps previously used connections in a connection pool for subsequenttransfers to reuse, if one of them matches the setup.Due to errors in the logic, the config matching function did not take 'issuercert' into account and it compared the involved paths *case insensitively*,which could lead to libcurl reusing wrong connections.File paths are, or can be, case sensitive on many systems but not all, and caneven vary depending on used file systems.The comparison also didn't include the 'issuer cert' which a transfer can setto qualify how to verify the server certificate.
When curl is instructed to get content using the metalink feature, and a user name and password are used to download the metalink XML file, those same credentials are then subsequently passed on to each of the servers from which curl will download or try to download the contents from. Often contrary to the user's expectations and intentions and without telling the user it happened.
When curl is instructed to download content using the metalink feature, thecontents is verified against a hash provided in the metalink XML file.The metalink XML file points out to the client how to get the same contentfrom a set of different URLs, potentially hosted by different servers and theclient can then download the file from one or several of them. In a serial orparallel manner.If one of the servers hosting the contents has been breached and the contentsof the specific file on that server is replaced with a modified payload, curlshould detect this when the hash of the file mismatches after a completeddownload. It should remove the contents and instead try getting the contentsfrom another URL. This is not done, and instead such a hash mismatch is onlymentioned in text and the potentially malicious content is kept in the file ondisk.
The npm package "tar" (aka node-tar) before versions 6.1.1, 5.0.6, 4.4.14, and 3.3.2 has a arbitrary File Creation/Overwrite vulnerability due to insufficient absolute path sanitization. node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the `preservePaths` flag is not set to `true`. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example `/home/user/.bashrc` would turn into `home/user/.bashrc`. This logic was insufficient when file paths contained repeated path roots such as `////home/user/.bashrc`. `node-tar` would only strip a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. `///home/user/.bashrc`) would still resolve to an absolute path, thus allowing arbitrary file creation and overwrite. This issue was addressed in releases 3.2.2, 4.4.14, 5.0.6 and 6.1.1. Users may work around this vulnerability without upgrading by creating a custom `onentry` method which sanitizes the `entry.path` or a `filter` method which removes entries with absolute paths. See referenced GitHub Advisory for details. Be aware of CVE-2021-32803 which fixes a similar bug in later versions of tar.
The npm package "tar" (aka node-tar) before versions 6.1.2, 5.0.7, 4.4.15, and 3.2.3 has an arbitrary File Creation/Overwrite vulnerability via insufficient symlink protection. `node-tar` aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary `stat` calls to determine whether a given path is a directory, paths are cached when directories are created. This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory. This order of operations resulted in the directory being created and added to the `node-tar` directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where `node-tar` checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it was thus possible to bypass `node-tar` symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite. This issue was addressed in releases 3.2.3, 4.4.15, 5.0.7 and 6.1.2.
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. A malformed input file could result in double free of an allocated buffer that leads to a crash. An attacker could leverage this vulnerability to cause denial of service condition. (CNVD-C-2021-79295)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. A malformed input file could result in an infinite loop condition that leads to denial of service condition. An attacker could leverage this vulnerability to consume excessive resources. (CNVD-C-2021-79300)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data when parsing JT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13442)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13430)
A vulnerability has been identified in JT2Go (All versions < V13.2), Solid Edge SE2021 (All Versions < SE2021MP5), Teamcenter Visualization (All versions < V13.2). The plmxmlAdapterSE70.dll library in affected applications lacks proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13427)
A vulnerability has been identified in JT2Go (All versions < V13.2), Solid Edge SE2021 (All Versions < SE2021MP5), Teamcenter Visualization (All versions < V13.2). The plmxmlAdapterSE70.dll library in affected applications lacks proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13424)
A vulnerability has been identified in JT2Go (All versions < V13.2), Solid Edge SE2021 (All Versions < SE2021MP5), Teamcenter Visualization (All versions < V13.2). The plmxmlAdapterSE70.dll library in affected applications lacks proper validation of user-supplied data when parsing ASM files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13423)
A vulnerability has been identified in JT2Go (All versions < V13.2), Solid Edge SE2021 (All Versions < SE2021MP5), Teamcenter Visualization (All versions < V13.2). The plmxmlAdapterSE70.dll library in affected applications lacks proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13422)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data when parsing JT files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13421)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing JT files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13420)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data when parsing JT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13419)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The JPEG2K_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing J2K files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13416)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The VisDraw.dll library in affected applications lacks proper validation of user-supplied data when parsing J2K files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13414)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Jt981.dll library in affected applications lacks proper validation of user-supplied data when parsing JT files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13406)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing SGI files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13404)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing PCT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13403)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing PCX files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13402)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The DL180CoolType.dll library in affected applications lacks proper validation of user-supplied data when parsing PDF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13380)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing SGI files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13356)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing SGI files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13355)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13354)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the fixed-length heap-based buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13353)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Mono_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing J2K files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13352)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13351)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13350)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13344)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13343)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in a memory corruption condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13342)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13340)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13199)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13198)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13197)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing BMP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13196)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13194)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information in the context of the current process. (ZDI-CAN-13192)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data prior to performing further free operations on an object when parsing BMP files. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13060)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13059)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The BMP_Loader.dll library in affected applications lacks proper validation of user-supplied data when parsing BMP files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13057)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13024)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13023
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13020)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Tiff_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds read past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12959)
A vulnerability has been identified in JT2Go (All versions < V13.2), Teamcenter Visualization (All versions < V13.2). The Gif_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing GIF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12956)
A vulnerability has been identified in Mendix Applications using Mendix 7 (All versions < V7.23.22), Mendix Applications using Mendix 8 (All versions < V8.18.7), Mendix Applications using Mendix 9 (All versions < V9.3.0). Write access checks of attributes of an object could be bypassed, if user has a write permissions to the first attribute of this object.
A vulnerability has been identified in JT Utilities (All versions < V13.0.2.0). When parsing specially crafted JT files, a race condition could cause an object to be released before being operated on, leading to NULL pointer deference condition and causing the application to crash. An attacker could leverage this vulnerability to cause a Denial-of-Service condition in the application.
A vulnerability has been identified in JT Utilities (All versions < V13.0.2.0). When parsing specially crafted JT files, a missing check for the validity of an iterator leads to NULL pointer deference condition, causing the application to crash. An attacker could leverage this vulnerability to cause a Denial-of-Service condition in the application.
A vulnerability has been identified in JT Utilities (All versions < V13.0.2.0). When parsing specially crafted JT files, a hash function is called with an incorrect argument leading the application to crash. An attacker could leverage this vulnerability to cause a Denial-of-Service condition in the application.
A vulnerability has been identified in Teamcenter Active Workspace V4 (All versions < V4.3.9), Teamcenter Active Workspace V5.0 (All versions < V5.0.7), Teamcenter Active Workspace V5.1 (All versions < V5.1.4). The affected application allows verbose error messages which allow leaking of sensitive information, such as full paths.
A vulnerability has been identified in Teamcenter Active Workspace V4 (All versions < V4.3.9), Teamcenter Active Workspace V5.0 (All versions < V5.0.7), Teamcenter Active Workspace V5.1 (All versions < V5.1.4). A reflected cross-site scripting (XSS) vulnerability exists in the web interface of the affected devices that could allow an attacker to execute malicious JavaScript code by tricking users into accessing a malicious link.
A vulnerability has been identified in Teamcenter Active Workspace V4 (All versions < V4.3.9), Teamcenter Active Workspace V5.0 (All versions < V5.0.7), Teamcenter Active Workspace V5.1 (All versions < V5.1.4). By sending malformed requests, a remote attacker could leak an application token due to an error not properly handled by the system.
A vulnerability has been identified in RUGGEDCOM ROS M2100 (All versions < V4.3.7), RUGGEDCOM ROS M2200 (All versions < V4.3.7), RUGGEDCOM ROS M969 (All versions < V4.3.7), RUGGEDCOM ROS RMC (All versions < V4.3.7), RUGGEDCOM ROS RMC20 (All versions < V4.3.7), RUGGEDCOM ROS RMC30 (All versions < V4.3.7), RUGGEDCOM ROS RMC40 (All versions < V4.3.7), RUGGEDCOM ROS RMC41 (All versions < V4.3.7), RUGGEDCOM ROS RMC8388 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RMC8388 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RP110 (All versions < V4.3.7), RUGGEDCOM ROS RS400 (All versions < V4.3.7), RUGGEDCOM ROS RS401 (All versions < V4.3.7), RUGGEDCOM ROS RS416 (All versions < V4.3.7), RUGGEDCOM ROS RS416v2 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RS416v2 V5.X (All versions < 5.5.4), RUGGEDCOM ROS RS8000 (All versions < V4.3.7), RUGGEDCOM ROS RS8000A (All versions < V4.3.7), RUGGEDCOM ROS RS8000H (All versions < V4.3.7), RUGGEDCOM ROS RS8000T (All versions < V4.3.7), RUGGEDCOM ROS RS900 (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RS900 (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RS900G (All versions < V4.3.7), RUGGEDCOM ROS RS900G (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RS900G (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RS900GP (All versions < V4.3.7), RUGGEDCOM ROS RS900L (All versions < V4.3.7), RUGGEDCOM ROS RS900W (All versions < V4.3.7), RUGGEDCOM ROS RS910 (All versions < V4.3.7), RUGGEDCOM ROS RS910L (All versions < V4.3.7), RUGGEDCOM ROS RS910W (All versions < V4.3.7), RUGGEDCOM ROS RS920L (All versions < V4.3.7), RUGGEDCOM ROS RS920W (All versions < V4.3.7), RUGGEDCOM ROS RS930L (All versions < V4.3.7), RUGGEDCOM ROS RS930W (All versions < V4.3.7), RUGGEDCOM ROS RS940G (All versions < V4.3.7), RUGGEDCOM ROS RS969 (All versions < V4.3.7), RUGGEDCOM ROS RSG2100 (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2100 (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2100 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2100P (All versions < V4.3.7), RUGGEDCOM ROS RSG2100P (32M) V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2100P (32M) V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2200 (All versions < V4.3.7), RUGGEDCOM ROS RSG2288 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2288 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2300 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2300 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2300P V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2300P V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG2488 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG2488 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG900 V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG900 V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG900C (All versions < V5.5.4), RUGGEDCOM ROS RSG900G V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG900G V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSG900R (All versions < V5.5.4), RUGGEDCOM ROS RSG920P V4.X (All versions < V4.3.7), RUGGEDCOM ROS RSG920P V5.X (All versions < V5.5.4), RUGGEDCOM ROS RSL910 (All versions < V5.5.4), RUGGEDCOM ROS RST2228 (All versions < V5.5.4), RUGGEDCOM ROS RST916C (All versions < V5.5.4), RUGGEDCOM ROS RST916P (All versions < V5.5.4), RUGGEDCOM ROS i800 (All versions < V4.3.7), RUGGEDCOM ROS i801 (All versions < V4.3.7), RUGGEDCOM ROS i802 (All versions < V4.3.7), RUGGEDCOM ROS i803 (All versions < V4.3.7). The DHCP client in affected devices fails to properly sanitize incoming DHCP packets. This could allow an unauthenticated remote attacker to cause memory to be overwritten, potentially allowing remote code execution.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 and earlier (All versions), SIMATIC PCS 7 V9.X (All versions < V9.1 SP2), SIMATIC PDM (All versions < V9.2 SP2), SIMATIC STEP 7 V5.X (All versions < V5.7), SINAMICS STARTER (containing STEP 7 OEM version) (All versions < V5.4 SP2 HF1). A directory containing metafiles relevant to devices' configurations has write permissions. An attacker could leverage this vulnerability by changing the content of certain metafiles and subsequently manipulate parameters or behavior of devices that would be later configured by the affected software.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 and earlier (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3), SIMATIC PDM (All versions < V9.2), SIMATIC STEP 7 V5.X (All versions < V5.6 SP2 HF3), SINAMICS STARTER (containing STEP 7 OEM version) (All versions < V5.4 HF2). The affected software contains a buffer overflow vulnerability while handling certain files that could allow a local attacker to trigger a denial-of-service condition or potentially lead to remote code execution.
A vulnerability has been identified in SINUMERIK Analyse MyCondition (All versions), SINUMERIK Analyze MyPerformance (All versions), SINUMERIK Analyze MyPerformance /OEE-Monitor (All versions), SINUMERIK Analyze MyPerformance /OEE-Tuning (All versions), SINUMERIK Integrate Client 02 (All versions >= V02.00.12 < 02.00.18), SINUMERIK Integrate Client 03 (All versions >= V03.00.12 < 03.00.18), SINUMERIK Integrate Client 04 (V04.00.02 and all versions >= V04.00.15 < 04.00.18), SINUMERIK Integrate for Production 4.1 (All versions < V4.1 SP10 HF3), SINUMERIK Integrate for Production 5.1 (V5.1), SINUMERIK Manage MyMachines (All versions), SINUMERIK Manage MyMachines /Remote (All versions), SINUMERIK Manage MyMachines /Spindel Monitor (All versions), SINUMERIK Manage MyPrograms (All versions), SINUMERIK Manage MyResources /Programs (All versions), SINUMERIK Manage MyResources /Tools (All versions), SINUMERIK Manage MyTools (All versions), SINUMERIK Operate V4.8 (All versions < V4.8 SP8), SINUMERIK Operate V4.93 (All versions < V4.93 HF7), SINUMERIK Operate V4.94 (All versions < V4.94 HF5), SINUMERIK Optimize MyProgramming /NX-Cam Editor (All versions). Due to an error in a third-party dependency the ssl flags used for setting up a TLS connection to a server are overwitten with wrong settings. This results in a missing validation of the server certificate and thus in a possible TLS MITM szenario.
A vulnerability has been identified in RWG1.M12 (All versions < V1.16.16), RWG1.M12D (All versions < V1.16.16), RWG1.M8 (All versions < V1.16.16). Sending specially crafted ARP packets to an affected device could cause a partial denial-of-service, preventing the device to operate normally. A restart is needed to restore normal operations.
Affected devices contain a vulnerability that allows an unauthenticated attacker to trigger a denial of service condition. The vulnerability can be triggered if a large amount of DCP reset packets are sent to the device.
Node.js before 16.4.1, 14.17.2, and 12.22.2 is vulnerable to local privilege escalation attacks under certain conditions on Windows platforms. More specifically, improper configuration of permissions in the installation directory allows an attacker to perform two different escalation attacks: PATH and DLL hijacking.
Node.js before 16.4.1, 14.17.2, 12.22.2 is vulnerable to an out-of-bounds read when uv__idna_toascii() is used to convert strings to ASCII. The pointer p is read and increased without checking whether it is beyond pe, with the latter holding a pointer to the end of the buffer. This can lead to information disclosures or crashes. This function can be triggered via uv_getaddrinfo().
The Telnet service of the SIMATIC HMI Comfort Panels system component in affected products does not require authentication, which may allow a remote attacker to gain access to the device if the service is enabled. Telnet is disabled by default on the SINAMICS Medium Voltage Products (SINAMICS SL150: All versions, SINAMICS SM150: All versions, SINAMICS SM150i: All versions).
An out-of-bounds write issue exists in the DGN file-reading procedure in the Drawings SDK (Version 2022.4 and prior) resulting from the lack of proper validation of user-supplied data. This can result in a write past the end of an allocated buffer and allow attackers to cause a denial-of-service condition or execute code in the context of the current process.
An out-of-bounds read issue exists within the parsing of DXF files in the Drawings SDK (All versions prior to 2022.4) resulting from the lack of proper validation of user-supplied data. This can result in a read past the end of an allocated buffer and allows attackers to cause a denial-of-service condition or read sensitive information from memory locations.
An out-of-bounds write issue exists in the DWG file-reading procedure in the Drawings SDK (All versions prior to 2022.4) resulting from the lack of proper validation of user-supplied data. This can result in a write past the end of an allocated buffer and allow attackers to cause a denial-of-service condition or execute code in the context of the current process.
A use-after-free issue exists in the DGN file-reading procedure in the Drawings SDK (All versions prior to 2022.4) resulting from the lack of proper validation of user-supplied data. This can result in a memory corruption or arbitrary code execution, allowing attackers to cause a denial-of-service condition or execute code in the context of the current process.
An out-of-bounds read issue exists in the DWG file-recovering procedure in the Drawings SDK (All versions prior to 2022.5) resulting from the lack of proper validation of user-supplied data. This can result in a read past the end of an allocated buffer and allow attackers to cause a denial-of-service condition or read sensitive information from memory locations.
Drawings SDK (All versions prior to 2022.4) are vulnerable to an out-of-bounds read due to parsing of DWG files resulting from the lack of proper validation of user-supplied data. This can result in a read past the end of an allocated buffer and allows attackers to cause a denial-of service condition or read sensitive information from memory.
An out-of-bounds write issue exists in the DXF file-recovering procedure in the Drawings SDK (All versions prior to 2022.4) resulting from the lack of proper validation of user-supplied data. This can result in a write past the end of an allocated buffer and allow attackers to cause a denial-of-service condition or execute code in the context of the current process.
An improper check for unusual or exceptional conditions issue exists within the parsing DGN files from Drawings SDK (Version 2022.4 and prior) resulting from the lack of proper validation of the user-supplied data. This may result in several of out-of-bounds problems and allow attackers to cause a denial-of-service condition or execute code in the context of the current process.
In the kernel in Insyde InsydeH2O 5.x, certain SMM drivers did not correctly validate the CommBuffer and CommBufferSize parameters, allowing callers to corrupt either the firmware or the OS memory. The fixed versions for this issue in the AhciBusDxe, IdeBusDxe, NvmExpressDxe, SdHostDriverDxe, and SdMmcDeviceDxe drivers are 05.16.25, 05.26.25, 05.35.25, 05.43.25, and 05.51.25 (for Kernel 5.1 through 5.5).
A denial of service vulnerability exists in Wibu-Systems CodeMeter versions < 7.21a. An unauthenticated remote attacker can exploit this issue to crash the CodeMeter Runtime Server.
A buffer over-read vulnerability exists in Wibu-Systems CodeMeter versions < 7.21a. An unauthenticated remote attacker can exploit this issue to disclose heap memory contents or crash the CodeMeter Runtime Server.
SINAMICS medium voltage routable products are affected by a vulnerability in the Sm@rtServer component for remote access that could allow an unauthenticated attacker to cause a denial-of-service condition, and/or execution of limited configuration modifications and/or execution of limited control commands on the SINAMICS Medium Voltage Products, Remote Access (SINAMICS SL150: All versions, SINAMICS SM150: All versions, SINAMICS SM150i: All versions).
curl 7.75.0 through 7.76.1 suffers from a use-after-free vulnerability resulting in already freed memory being used when a TLS 1.3 session ticket arrives over a connection. A malicious server can use this in rare unfortunate circumstances to potentially reach remote code execution in the client. When libcurl at run-time sets up support for TLS 1.3 session tickets on a connection using OpenSSL, it stores pointers to the transfer in-memory object for later retrieval when a session ticket arrives. If the connection is used by multiple transfers (like with a reused HTTP/1.1 connection or multiplexed HTTP/2 connection) that first transfer object might be freed before the new session is established on that connection and then the function will access a memory buffer that might be freed. When using that memory, libcurl might even call a function pointer in the object, making it possible for a remote code execution if the server could somehow manage to get crafted memory content into the correct place in memory.
curl 7.7 through 7.76.1 suffers from an information disclosure when the `-t` command line option, known as `CURLOPT_TELNETOPTIONS` in libcurl, is used to send variable=content pairs to TELNET servers. Due to a flaw in the option parser for sending NEW_ENV variables, libcurl could be made to pass on uninitialized data from a stack based buffer to the server, resulting in potentially revealing sensitive internal information to the server using a clear-text network protocol.
curl 7.61.0 through 7.76.1 suffers from exposure of data element to wrong session due to a mistake in the code for CURLOPT_SSL_CIPHER_LIST when libcurl is built to use the Schannel TLS library. The selected cipher set was stored in a single "static" variable in the library, which has the surprising side-effect that if an application sets up multiple concurrent transfers, the last one that sets the ciphers will accidentally control the set used by all transfers. In a worst-case scenario, this weakens transport security significantly.
Race condition in a subsystem in the Intel(R) LMS versions before 2039.1.0.0 may allow a privileged user to potentially enable escalation of privilege via local access.
Improper buffer restrictions in a subsystem in the Intel(R) CSME versions before 11.8.86, 11.12.86, 11.22.86, 12.0.81, 13.0.47, 13.30.17, 14.1.53, 14.5.32 and 15.0.22 may allow a privileged user to potentially enable escalation of privilege via local access.
Race condition in the firmware for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access.
Domain-bypass transient execution vulnerability in some Intel Atom(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
Improper initialization in a subsystem in the Intel(R) CSME versions before 11.8.86, 11.12.86, 11.22.86, 12.0.81, 13.0.47, 13.30.17, 14.1.53, 14.5.32, 13.50.11 and 15.0.22 may allow a privileged user to potentially enable information disclosure via local access.
Out of bound read in a subsystem in the Intel(R) CSME versions before 12.0.81, 13.0.47, 13.30.17, 14.1.53 and 14.5.32 may allow a privileged user to potentially enable information disclosure via local access.
Improper input validation in the firmware for some Intel(R) Processors may allow an authenticated user to potentially enable denial of service via local access.
Out of bounds read in the firmware for some Intel(R) Processors may allow an authenticated user to potentially enable escalation of privilege via local access.
Out of bounds write in the firmware for some Intel(R) Processors may allow a privileged user to potentially enable denial of service via local access.
Improper initialization in the firmware for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access.
The jutil.dll library in all versions of Solid Edge SE2020 before 2020MP14 and all versions of Solid Edge SE2021 before SE2021MP5 lack proper validation of user-supplied data when parsing DFT files. This could result in an out-of-bounds write past the end of an allocation structure. An attacker could leverage this vulnerability to execute code in the context of the current process.
The ugeom2d.dll library in all versions of Solid Edge SE2020 before 2020MP14 and all versions of Solid Edge SE2021 before SE2021MP5 lack proper validation of user-supplied data when parsing DFT files. This could result in an out-of-bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in SIMATIC RF166C (All versions > V1.1 and < V1.3.2), SIMATIC RF185C (All versions > V1.1 and < V1.3.2), SIMATIC RF186C (All versions > V1.1 and < V1.3.2), SIMATIC RF186CI (All versions > V1.1 and < V1.3.2), SIMATIC RF188C (All versions > V1.1 and < V1.3.2), SIMATIC RF188CI (All versions > V1.1 and < V1.3.2), SIMATIC RF360R (All versions < V2.0), SIMATIC Reader RF610R CMIIT (All versions > V3.0 < V4.0), SIMATIC Reader RF610R ETSI (All versions > V3.0 < V4.0), SIMATIC Reader RF610R FCC (All versions > V3.0 < V4.0), SIMATIC Reader RF615R CMIIT (All versions > V3.0 < V4.0), SIMATIC Reader RF615R ETSI (All versions > V3.0 < V4.0), SIMATIC Reader RF615R FCC (All versions > V3.0 < V4.0), SIMATIC Reader RF650R ARIB (All versions > V3.0 < V4.0), SIMATIC Reader RF650R CMIIT (All versions > V3.0 < V4.0), SIMATIC Reader RF650R ETSI (All versions > V3.0 < V4.0), SIMATIC Reader RF650R FCC (All versions > V3.0 < V4.0), SIMATIC Reader RF680R ARIB (All versions > V3.0 < V4.0), SIMATIC Reader RF680R CMIIT (All versions > V3.0 < V4.0), SIMATIC Reader RF680R ETSI (All versions > V3.0 < V4.0), SIMATIC Reader RF680R FCC (All versions > V3.0 < V4.0), SIMATIC Reader RF685R ARIB (All versions > V3.0 < V4.0), SIMATIC Reader RF685R CMIIT (All versions > V3.0 < V4.0), SIMATIC Reader RF685R ETSI (All versions > V3.0 < V4.0), SIMATIC Reader RF685R FCC (All versions > V3.0 < V4.0). Affected devices do not properly handle large numbers of incoming connections. An attacker may leverage this to cause a Denial-of-Service situation.
A vulnerability has been identified in Simcenter Femap 2020.2 (All versions < V2020.2.MP3), Simcenter Femap 2021.1 (All versions < V2021.1.MP3). The femap.exe application lacks proper validation of user-supplied data when parsing FEMAP files. This could result in an out of bounds write past the end of an allocated structure, a different vulnerability than CVE-2021-27387. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12820)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.3), Teamcenter Visualization (All versions < V13.1.0.3). The TIFF_loader.dll library in affected applications lacks proper validation of user-supplied data when parsing TIFF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13131)
A vulnerability has been identified in Simcenter Femap 2020.2 (All versions < V2020.2.MP3), Simcenter Femap 2021.1 (All versions < V2021.1.MP3). The femap.exe application lacks proper validation of user-supplied data when parsing FEMAP files. This could result in an out of bounds write past the end of an allocated structure, a different vulnerability than CVE-2021-27399. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12819)
A vulnerability has been identified in SIMATIC Drive Controller family (All versions < V2.9.2), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants) (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V21.9), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions < V4.5.0), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V2.9.2), SIMATIC S7-1500 Software Controller (All versions < V21.9), SIMATIC S7-PLCSIM Advanced (All versions < V4.0), SINAMICS PERFECT HARMONY GH180 Drives (Drives manufactured before 2021-08-13), SINUMERIK MC (All versions < V6.15), SINUMERIK ONE (All versions < V6.15). Affected devices are vulnerable to a memory protection bypass through a specific operation. A remote unauthenticated attacker with network access to port 102/tcp could potentially write arbitrary data and code to protected memory areas or read sensitive data to launch further attacks.
Datakit Software libraries CatiaV5_3dRead, CatiaV6_3dRead, Step3dRead, Ug3dReadPsr, Jt3dReadPsr modules in KeyShot Versions v10.1 and prior are vulnerable to an out-of-bounds read, which may allow an attacker to execute arbitrary code.
Datakit Software libraries CatiaV5_3dRead, CatiaV6_3dRead, Step3dRead, Ug3dReadPsr, Jt3dReadPsr modules in KeyShot Versions v10.1 and prior lack proper validation of user-supplied data when parsing PRT files. This could lead to pointer dereferences of a value obtained from an untrusted source. An attacker could leverage this vulnerability to execute code in the context of the current process.
Datakit Software libraries CatiaV5_3dRead, CatiaV6_3dRead, Step3dRead, Ug3dReadPsr, Jt3dReadPsr modules in KeyShot Versions v10.1 and prior lack proper validation of user-supplied data when parsing STP files. This could result in a stack-based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process.
When opening a specially crafted 3DXML file, the application containing Datakit Software libraries CatiaV5_3dRead, CatiaV6_3dRead, Step3dRead, Ug3dReadPsr, Jt3dReadPsr modules in KeyShot Versions v10.1 and prior could disclose arbitrary files to remote attackers. This is because of the passing of specially crafted content to the underlying XML parser without taking proper restrictions such as prohibiting an external DTD.
Datakit Software libraries CatiaV5_3dRead, CatiaV6_3dRead, Step3dRead, Ug3dReadPsr, Jt3dReadPsr modules in KeyShot Versions v10.1 and prior lack proper validation of user-supplied data when parsing CATPart files. This could result in an out-of-bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process.
In ISC DHCP 4.1-ESV-R1 -> 4.1-ESV-R16, ISC DHCP 4.4.0 -> 4.4.2 (Other branches of ISC DHCP (i.e., releases in the 4.0.x series or lower and releases in the 4.3.x series) are beyond their End-of-Life (EOL) and no longer supported by ISC. From inspection it is clear that the defect is also present in releases from those series, but they have not been officially tested for the vulnerability), The outcome of encountering the defect while reading a lease that will trigger it varies, according to: the component being affected (i.e., dhclient or dhcpd) whether the package was built as a 32-bit or 64-bit binary whether the compiler flag -fstack-protection-strong was used when compiling In dhclient, ISC has not successfully reproduced the error on a 64-bit system. However, on a 32-bit system it is possible to cause dhclient to crash when reading an improper lease, which could cause network connectivity problems for an affected system due to the absence of a running DHCP client process. In dhcpd, when run in DHCPv4 or DHCPv6 mode: if the dhcpd server binary was built for a 32-bit architecture AND the -fstack-protection-strong flag was specified to the compiler, dhcpd may exit while parsing a lease file containing an objectionable lease, resulting in lack of service to clients. Additionally, the offending lease and the lease immediately following it in the lease database may be improperly deleted. if the dhcpd server binary was built for a 64-bit architecture OR if the -fstack-protection-strong compiler flag was NOT specified, the crash will not occur, but it is possible for the offending lease and the lease which immediately followed it to be improperly deleted.
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V16.0.5). The PlantSimCore.dll library lacks proper validation of user-supplied data when parsing SPP files. This could result in a stack based buffer overflow, a different vulnerability than CVE-2021-27396. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13290)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V16.0.5). The PlantSimCore.dll library lacks proper validation of user-supplied data when parsing SPP files. This could result in a memory corruption condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13287)
A vulnerability has been identified in Tecnomatix Plant Simulation (All versions < V16.0.5). The PlantSimCore.dll library lacks proper validation of user-supplied data when parsing SPP files. This could result in a stack based buffer overflow, a different vulnerability than CVE-2021-27398. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13279)
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4), SINAMICS GH150 (All versions), SINAMICS GL150 (with option X30) (All versions), SINAMICS GM150 (with option X30) (All versions), SINAMICS SH150 (All versions), SINAMICS SL150 (All versions), SINAMICS SM120 (All versions), SINAMICS SM150 (All versions), SINAMICS SM150i (All versions). SmartVNC has a heap allocation leak vulnerability in the device layout handler on client side, which could result in a Denial-of-Service condition.
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4), SINAMICS GH150 (All versions), SINAMICS GL150 (with option X30) (All versions), SINAMICS GM150 (with option X30) (All versions), SINAMICS SH150 (All versions), SINAMICS SL150 (All versions), SINAMICS SM120 (All versions), SINAMICS SM150 (All versions), SINAMICS SM150i (All versions). A remote attacker could send specially crafted packets to SmartVNC device layout handler on client side, which could influence the amount of resources consumed and result in a Denial-of-Service (infinite loop) condition.
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4), SINAMICS GH150 (All versions), SINAMICS GL150 (with option X30) (All versions), SINAMICS GM150 (with option X30) (All versions), SINAMICS SH150 (All versions), SINAMICS SL150 (All versions), SINAMICS SM120 (All versions), SINAMICS SM150 (All versions), SINAMICS SM150i (All versions). SmartVNC has an out-of-bounds memory access vulnerability in the device layout handler, represented by a binary data stream on client side, which can potentially result in code execution.
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4), SINAMICS GH150 (All versions), SINAMICS GL150 (with option X30) (All versions), SINAMICS GM150 (with option X30) (All versions), SINAMICS SH150 (All versions), SINAMICS SL150 (All versions), SINAMICS SM120 (All versions), SINAMICS SM150 (All versions), SINAMICS SM150i (All versions). SmartVNC has a heap allocation leak vulnerability in the server Tight encoder, which could result in a Denial-of-Service condition.
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4). SmartVNC client fails to handle an exception properly if the program execution process is modified after sending a packet from the server, which could result in a Denial-of-Service condition.
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4). SmartVNC has an out-of-bounds memory access vulnerability that could be triggered on the client side when sending data from the server, which could result in a Denial-of-Service condition.
A vulnerability has been identified in SIMATIC HMI Comfort Outdoor Panels V15 7\" & 15\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Outdoor Panels V16 7\" & 15\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI Comfort Panels V15 4\" - 22\" (incl. SIPLUS variants) (All versions < V15.1 Update 6), SIMATIC HMI Comfort Panels V16 4\" - 22\" (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels V15 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Update 6), SIMATIC HMI KTP Mobile Panels V16 KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V16 Update 4), SIMATIC WinCC Runtime Advanced V15 (All versions < V15.1 Update 6), SIMATIC WinCC Runtime Advanced V16 (All versions < V16 Update 4). SmartVNC has an out-of-bounds memory access vulnerability that could be triggered on the server side when sending data from the client, which could result in a Denial-of-Service condition.
An unauthenticated remote attacker could create a permanent denial-of-service condition by sending specially crafted OSPF packets. Successful exploitation requires OSPF to be enabled on an affected device on the SCALANCE XM-400, XR-500 (All versions prior to v6.4).
A vulnerability has been identified in SIMATIC NET CP 343-1 Advanced (incl. SIPLUS variants) (All versions), SIMATIC NET CP 343-1 Lean (incl. SIPLUS variants) (All versions), SIMATIC NET CP 343-1 Standard (incl. SIPLUS variants) (All versions). Specially crafted packets sent to TCP port 102 could cause a Denial-of-Service condition on the affected devices. A cold restart might be necessary in order to recover.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 1st Generation (incl. SIPLUS variants) (All versions < V16 Update 4), SIMATIC HMI KTP Mobile Panels (All versions < V16 Update 4). Specially crafted packets sent to port 161/udp can cause the SNMP service of affected devices to crash. A manual restart of the device is required to resume operation of the service.
An issue was discovered in the Linux kernel 5.8.9. The WEP, WPA, WPA2, and WPA3 implementations reassemble fragments even though some of them were sent in plaintext. This vulnerability can be abused to inject packets and/or exfiltrate selected fragments when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used.
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WPA, WPA2, and WPA3 implementations reassemble fragments with non-consecutive packet numbers. An adversary can abuse this to exfiltrate selected fragments. This vulnerability is exploitable when another device sends fragmented frames and the WEP, CCMP, or GCMP data-confidentiality protocol is used. Note that WEP is vulnerable to this attack by design.
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept second (or subsequent) broadcast fragments even when sent in plaintext and process them as full unfragmented frames. An adversary can abuse this to inject arbitrary network packets independent of the network configuration.
An issue was discovered on Samsung Galaxy S3 i9305 4.4.4 devices. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext A-MSDU frames as long as the first 8 bytes correspond to a valid RFC1042 (i.e., LLC/SNAP) header for EAPOL. An adversary can abuse this to inject arbitrary network packets independent of the network configuration.
An issue was discovered in the ALFA Windows 10 driver 1030.36.604 for AWUS036ACH. The WEP, WPA, WPA2, and WPA3 implementations accept fragmented plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration.
An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The Wi-Fi implementation does not verify the Message Integrity Check (authenticity) of fragmented TKIP frames. An adversary can abuse this to inject and possibly decrypt packets in WPA or WPA2 networks that support the TKIP data-confidentiality protocol.
An issue was discovered in the ALFA Windows 10 driver 6.1316.1209 for AWUS036H. The WEP, WPA, WPA2, and WPA3 implementations accept plaintext frames in a protected Wi-Fi network. An adversary can abuse this to inject arbitrary data frames independent of the network configuration.
The 802.11 standard that underpins Wi-Fi Protected Access (WPA, WPA2, and WPA3) and Wired Equivalent Privacy (WEP) doesn't require that the A-MSDU flag in the plaintext QoS header field is authenticated. Against devices that support receiving non-SSP A-MSDU frames (which is mandatory as part of 802.11n), an adversary can abuse this to inject arbitrary network packets.
In BIND 9.5.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.11.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.1 of the BIND 9.17 development branch, BIND servers are vulnerable if they are running an affected version and are configured to use GSS-TSIG features. In a configuration which uses BIND's default settings the vulnerable code path is not exposed, but a server can be rendered vulnerable by explicitly setting values for the tkey-gssapi-keytab or tkey-gssapi-credential configuration options. Although the default configuration is not vulnerable, GSS-TSIG is frequently used in networks where BIND is integrated with Samba, as well as in mixed-server environments that combine BIND servers with Active Directory domain controllers. For servers that meet these conditions, the ISC SPNEGO implementation is vulnerable to various attacks, depending on the CPU architecture for which BIND was built: For named binaries compiled for 64-bit platforms, this flaw can be used to trigger a buffer over-read, leading to a server crash. For named binaries compiled for 32-bit platforms, this flaw can be used to trigger a server crash due to a buffer overflow and possibly also to achieve remote code execution. We have determined that standard SPNEGO implementations are available in the MIT and Heimdal Kerberos libraries, which support a broad range of operating systems, rendering the ISC implementation unnecessary and obsolete. Therefore, to reduce the attack surface for BIND users, we will be removing the ISC SPNEGO implementation in the April releases of BIND 9.11 and 9.16 (it had already been dropped from BIND 9.17). We would not normally remove something from a stable ESV (Extended Support Version) of BIND, but since system libraries can replace the ISC SPNEGO implementation, we have made an exception in this case for reasons of stability and security.
In BIND 9.0.0 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a query for a record triggering the flaw described above, the named process will terminate due to a failed assertion check. The vulnerability affects all currently maintained BIND 9 branches (9.11, 9.11-S, 9.16, 9.16-S, 9.17) as well as all other versions of BIND 9.
In BIND 9.8.5 -> 9.8.8, 9.9.3 -> 9.11.29, 9.12.0 -> 9.16.13, and versions BIND 9.9.3-S1 -> 9.11.29-S1 and 9.16.8-S1 -> 9.16.13-S1 of BIND 9 Supported Preview Edition, as well as release versions 9.17.0 -> 9.17.11 of the BIND 9.17 development branch, when a vulnerable version of named receives a malformed IXFR triggering the flaw described above, the named process will terminate due to a failed assertion the next time the transferred secondary zone is refreshed.
An out-of-bounds write vulnerability exists in the file-reading procedure in Open Design Alliance Drawings SDK before 2021.6 on all supported by ODA platforms in static configuration. This can allow attackers to cause a crash, potentially enabling a denial of service attack (Crash, Exit, or Restart) or possible code execution.
A vulnerability has been identified in Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2013.08), Nucleus Source Code (Versions including affected DNS modules). The DNS client does not properly randomize UDP port numbers of DNS requests. That could allow an attacker to poison the DNS cache or spoof DNS resolving.
A vulnerability has been identified in Siveillance Video Open Network Bridge (2020 R3), Siveillance Video Open Network Bridge (2020 R2), Siveillance Video Open Network Bridge (2020 R1), Siveillance Video Open Network Bridge (2019 R3), Siveillance Video Open Network Bridge (2019 R2), Siveillance Video Open Network Bridge (2019 R1), Siveillance Video Open Network Bridge (2018 R3), Siveillance Video Open Network Bridge (2018 R2). Affected Open Network Bridges store user credentials for the authentication between ONVIF clients and ONVIF server using a hard-coded key. The encrypted credentials can be retrieved via the MIP SDK. This could allow an authenticated remote attacker to retrieve and decrypt all credentials stored on the ONVIF server.
A vulnerability has been identified in Opcenter Quality (All versions < V12.2), QMS Automotive (All versions < V12.30). A private sign key is shipped with the product without adequate protection.
A vulnerability has been identified in Solid Edge SE2020 (All versions < SE2020MP13), Solid Edge SE2020 (All versions < SE2020MP14), Solid Edge SE2021 (All Versions < SE2021MP4). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in a stack based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-13040)
A vulnerability has been identified in Solid Edge SE2020 (All versions < SE2020MP13), Solid Edge SE2020 (All versions < SE2020MP14), Solid Edge SE2021 (All Versions < SE2021MP4). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12529)
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.3), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus ReadyStart V4 (All versions < V4.1.0), Nucleus Source Code (Versions including affected DNS modules), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), SIMOTICS CONNECT 400 (All versions >= V0.5.0.0 < V1.0.0.0), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). The DNS client does not properly randomize DNS transaction IDs. That could allow an attacker to poison the DNS cache or spoof DNS resolving.
A vulnerability has been identified in Tecnomatix RobotExpert (All versions < V16.1). Affected applications lack proper validation of user-supplied data when parsing CELL files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12608)
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < 5.5.1), SCALANCE X201-3P IRT (All versions < 5.5.1), SCALANCE X201-3P IRT PRO (All versions < 5.5.1), SCALANCE X202-2 IRT (All versions < 5.5.1), SCALANCE X202-2P IRT (incl. SIPLUS NET variant) (All versions < 5.5.1), SCALANCE X202-2P IRT PRO (All versions < 5.5.1), SCALANCE X204 IRT (All versions < 5.5.1), SCALANCE X204 IRT PRO (All versions < 5.5.1), SCALANCE X204-2 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X204-2FM (All versions < V5.2.5), SCALANCE X204-2LD (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X204-2LD TS (All versions < V5.2.5), SCALANCE X204-2TS (All versions < V5.2.5), SCALANCE X206-1 (All versions < V5.2.5), SCALANCE X206-1LD (All versions < V5.2.5), SCALANCE X208 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X208PRO (All versions < V5.2.5), SCALANCE X212-2 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X212-2LD (All versions < V5.2.5), SCALANCE X216 (All versions < V5.2.5), SCALANCE X224 (All versions < V5.2.5), SCALANCE XF201-3P IRT (All versions < 5.5.1), SCALANCE XF202-2P IRT (All versions < 5.5.1), SCALANCE XF204 (All versions < V5.2.5), SCALANCE XF204 IRT (All versions < 5.5.1), SCALANCE XF204-2 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE XF204-2BA IRT (All versions < 5.5.1), SCALANCE XF206-1 (All versions < V5.2.5), SCALANCE XF208 (All versions < V5.2.5). Incorrect processing of POST requests in the web server may write out of bounds in stack. An attacker might leverage this to denial-of-service of the device or remote code execution.
A vulnerability has been identified in SCALANCE X200-4P IRT (All versions < 5.5.1), SCALANCE X201-3P IRT (All versions < 5.5.1), SCALANCE X201-3P IRT PRO (All versions < 5.5.1), SCALANCE X202-2 IRT (All versions < 5.5.1), SCALANCE X202-2P IRT (incl. SIPLUS NET variant) (All versions < 5.5.1), SCALANCE X202-2P IRT PRO (All versions < 5.5.1), SCALANCE X204 IRT (All versions < 5.5.1), SCALANCE X204 IRT PRO (All versions < 5.5.1), SCALANCE X204-2 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X204-2FM (All versions < V5.2.5), SCALANCE X204-2LD (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X204-2LD TS (All versions < V5.2.5), SCALANCE X204-2TS (All versions < V5.2.5), SCALANCE X206-1 (All versions < V5.2.5), SCALANCE X206-1LD (All versions < V5.2.5), SCALANCE X208 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X208PRO (All versions < V5.2.5), SCALANCE X212-2 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE X212-2LD (All versions < V5.2.5), SCALANCE X216 (All versions < V5.2.5), SCALANCE X224 (All versions < V5.2.5), SCALANCE XF201-3P IRT (All versions < 5.5.1), SCALANCE XF202-2P IRT (All versions < 5.5.1), SCALANCE XF204 (All versions < V5.2.5), SCALANCE XF204 IRT (All versions < 5.5.1), SCALANCE XF204-2 (incl. SIPLUS NET variant) (All versions < V5.2.5), SCALANCE XF204-2BA IRT (All versions < 5.5.1), SCALANCE XF206-1 (All versions < V5.2.5), SCALANCE XF208 (All versions < V5.2.5). Incorrect processing of POST requests in the webserver may result in write out of bounds in heap. An attacker might leverage this to cause denial-of-service on the device and potentially remotely execute code.
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus ReadyStart V4 (All versions < V4.1.0), Nucleus Source Code (All versions including affected IPv6 stack). The function that processes the Hop-by-Hop extension header in IPv6 packets and its options lacks any checks against the length field of the header, allowing attackers to put the function into an infinite loop by supplying arbitrary length values.
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.4), Nucleus ReadyStart V4 (All versions < V4.1.0), Nucleus Source Code (All versions including affected IPv6 stack). The function that processes IPv6 headers does not check the lengths of extension header options, allowing attackers to put this function into an infinite loop with crafted length values.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.3), Nucleus ReadyStart V4 (All versions < V4.1.0), Nucleus Source Code (Versions including affected DNS modules), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). The DNS domain name record decompression functionality does not properly validate the pointer offset values. The parsing of malformed responses could result in a read access past the end of an allocated structure. An attacker with a privileged position in the network could leverage this vulnerability to cause a denial-of-service condition.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.3), Nucleus ReadyStart V4 (All versions < V4.1.0), Nucleus Source Code (Versions including affected DNS modules), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). The DNS response parsing functionality does not properly validate various length and counts of the records. The parsing of malformed responses could result in a read past the end of an allocated structure. An attacker with a privileged position in the network could leverage this vulnerability to cause a denial-of-service condition or leak the memory past the allocated structure.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.3), Nucleus ReadyStart V4 (All versions < V4.1.0), Nucleus Source Code (Versions including affected DNS modules), SIMOTICS CONNECT 400 (All versions < V0.5.0.0), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). The DNS domain name label parsing functionality does not properly validate the null-terminated name in DNS-responses. The parsing of malformed responses could result in a read past the end of an allocated structure. An attacker with a privileged position in the network could leverage this vulnerability to cause a denial-of-service condition or leak the read memory.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions < V5.2), Nucleus Source Code (Versions including affected DNS modules), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). The DNS domain name record decompression functionality does not properly validate the pointer offset values. The parsing of malformed responses could result in a write past the end of an allocated structure. An attacker with a privileged position in the network could leverage this vulnerability to execute code in the context of the current process or cause a denial-of-service condition.
A vulnerability has been identified in Solid Edge SE2020 (All versions < SE2020MP13), Solid Edge SE2020 (All versions < SE2020MP14), Solid Edge SE2021 (All Versions < SE2021MP4). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could lead to pointer dereferences of a value obtained from untrusted source. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11919)
A vulnerability has been identified in LOGO! Soft Comfort (All versions < V8.4). The software insecurely loads libraries which makes it vulnerable to DLL hijacking. Successful exploitation by a local attacker could lead to a takeover of the system where the software is installed.
A vulnerability has been identified in LOGO! Soft Comfort (All versions < V8.4). A zip slip vulnerability could be triggered while importing a compromised project file to the affected software. Chained with other vulnerabilities this vulnerability could ultimately lead to a system takeover by an attacker.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions < V5.2), Nucleus Source Code (Versions including affected DNS modules), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). The DNS domain name label parsing functionality does not properly validate the names in DNS-responses. The parsing of malformed responses could result in a write past the end of an allocated structure. An attacker with a privileged position in the network could leverage this vulnerability to execute code in the context of the current process or cause a denial-of-service condition.
An issue was discovered in Wind River VxWorks before 6.5. There is a possible heap overflow in dhcp client.
curl 7.63.0 to and including 7.75.0 includes vulnerability that allows a malicious HTTPS proxy to MITM a connection due to bad handling of TLS 1.3 session tickets. When using a HTTPS proxy and TLS 1.3, libcurl can confuse session tickets arriving from the HTTPS proxy but work as if they arrived from the remote server and then wrongly "short-cut" the host handshake. When confusing the tickets, a HTTPS proxy can trick libcurl to use the wrong session ticket resume for the host and thereby circumvent the server TLS certificate check and make a MITM attack to be possible to perform unnoticed. Note that such a malicious HTTPS proxy needs to provide a certificate that curl will accept for the MITMed server for an attack to work - unless curl has been told to ignore the server certificate check.
curl 7.1.1 to and including 7.75.0 is vulnerable to an "Exposure of Private Personal Information to an Unauthorized Actor" by leaking credentials in the HTTP Referer: header. libcurl does not strip off user credentials from the URL when automatically populating the Referer: HTTP request header field in outgoing HTTP requests, and therefore risks leaking sensitive data to the server that is the target of the second HTTP request.
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.7 and below; Aruba Instant 8.7.x: 8.7.1.1 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote cross-site scripting (xss) vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.7 and below; Aruba Instant 8.7.x: 8.7.1.1 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary file modification vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.7 and below; Aruba Instant 8.7.x: 8.7.1.1 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary file modification vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.7 and below; Aruba Instant 8.7.x: 8.7.1.1 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary file read vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.7 and below; Aruba Instant 8.7.x: 8.7.1.1 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary file read vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.6 and below; Aruba Instant 8.7.x: 8.7.1.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary directory create vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.6 and below; Aruba Instant 8.7.x: 8.7.1.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote buffer overflow vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.16 and below; Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.6 and below; Aruba Instant 8.6.x: 8.6.0.2 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary file modification vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.11 and below; Aruba Instant 8.6.x: 8.6.0.6 and below; Aruba Instant 8.7.x: 8.7.1.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote buffer overflow vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.16 and below; Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.6 and below; Aruba Instant 8.6.x: 8.6.0.2 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote arbitrary file modification vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote unauthorized disclosure of information vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.18 and below; Aruba Instant 6.5.x: 6.5.4.18 and below; Aruba Instant 8.3.x: 8.3.0.14 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote buffer overflow vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.17 and below; Aruba Instant 6.5.x: 6.5.4.16 and below; Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.6 and below; Aruba Instant 8.6.x: 8.6.0.2 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote denial of service (dos) vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 8.3.x: 8.3.0.12 and below; Aruba Instant 8.5.x: 8.5.0.9 and below; Aruba Instant 8.6.x: 8.6.0.4 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A remote execution of arbitrary commands vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.5.x: 6.5.4.17 and below; Aruba Instant 8.3.x: 8.3.0.13 and below; Aruba Instant 8.5.x: 8.5.0.10 and below; Aruba Instant 8.6.x: 8.6.0.5 and below; Aruba Instant 8.7.x: 8.7.0.0 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
A local authentication bypass vulnerability was discovered in some Aruba Instant Access Point (IAP) products in version(s): Aruba Instant 6.4.x: 6.4.4.8-4.2.4.18 and below; Aruba Instant 6.5.x: 6.5.4.15 and below; Aruba Instant 8.3.x: 8.3.0.11 and below; Aruba Instant 8.4.x: 8.4.0.5 and below; Aruba Instant 8.5.x: 8.5.0.6 and below; Aruba Instant 8.6.x: 8.6.0.2 and below. Aruba has released patches for Aruba Instant that address this security vulnerability.
In FreeBSD 12.1-STABLE before r365010, 11.4-STABLE before r365011, 12.1-RELEASE before p9, 11.4-RELEASE before p3, and 11.3-RELEASE before p13, dhclient(8) fails to handle certain malformed input related to handling of DHCP option 119 resulting a heap overflow. The heap overflow could in principle be exploited to achieve remote code execution. The affected process runs with reduced privileges in a Capsicum sandbox, limiting the immediate impact of an exploit.
An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. All OpenSSL 1.1.1 versions are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1-1.1.1j).
The package hosted-git-info before 3.0.8 are vulnerable to Regular Expression Denial of Service (ReDoS) via regular expression shortcutMatch in the fromUrl function in index.js. The affected regular expression exhibits polynomial worst-case time complexity.
A flaw was found in multiple versions of OpenvSwitch. Specially crafted LLDP packets can cause memory to be lost when allocating data to handle specific optional TLVs, potentially causing a denial of service. The highest threat from this vulnerability is to system availability.
A vulnerability has been identified in Solid Edge SE2020 (All Versions < SE2020MP13), Solid Edge SE2021 (All Versions < SE2021MP3). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds read past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12534)
A vulnerability has been identified in Solid Edge SE2020 (All versions < SE2020MP13), Solid Edge SE2021 (All Versions < SE2021MP4). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12532)
A vulnerability has been identified in RUGGEDCOM RM1224 (V6.3), SCALANCE M-800 (V6.3), SCALANCE S615 (V6.3), SCALANCE SC-600 (All Versions >= V2.1 and < V2.1.3). Multiple failed SSH authentication attempts could trigger a temporary Denial-of-Service under certain conditions. When triggered, the device will reboot automatically.
A vulnerability has been identified in SIMATIC S7-PLCSIM V5.4 (All versions). An attacker with local access to the system could cause a Denial-of-Service condition in the application when it is used to open a specially crafted file. As a consequence, a divide by zero operation could occur and cause the application to terminate unexpectedly and must be restarted to restore the service.
A vulnerability has been identified in SIMATIC S7-PLCSIM V5.4 (All versions). An attacker with local access to the system could cause a Denial-of-Service condition in the application when it is used to open a specially crafted file. As a consequence, a NULL pointer deference condition could cause the application to terminate unexpectedly and must be restarted to restore the service.
A vulnerability has been identified in SIMATIC S7-PLCSIM V5.4 (All versions). An attacker with local access to the system could cause a Denial-of-Service condition in the application when it is used to open a specially crafted file. As a consequence, the application could enter an infinite loop, become unresponsive and must be restarted to restore the service.
A vulnerability has been identified in RUGGEDCOM RM1224 (All versions >= V4.3 and < V6.4), SCALANCE M-800 (All versions >= V4.3 and < V6.4), SCALANCE S615 (All versions >= V4.3 and < V6.4), SCALANCE SC-600 Family (All versions >= V2.0 and < V2.1.3), SCALANCE XB-200 (All versions < V4.1), SCALANCE XC-200 (All versions < V4.1), SCALANCE XF-200BA (All versions < V4.1), SCALANCE XM400 (All versions < V6.2), SCALANCE XP-200 (All versions < V4.1), SCALANCE XR-300WG (All versions < V4.1), SCALANCE XR500 (All versions < V6.2). Affected devices contain a stack-based buffer overflow vulnerability in the handling of STP BPDU frames that could allow a remote attacker to trigger a denial-of-service condition or potentially remote code execution. Successful exploitation requires the passive listening feature of the device to be active.
A vulnerability has been identified in Solid Edge SE2020 (All Versions < SE2020MP13), Solid Edge SE2021 (All Versions < SE2021MP3). When opening a specially crafted SEECTCXML file, the application could disclose arbitrary files to remote attackers. This is because of the passing of specially crafted content to the underlying XML parser without taking proper restrictions such as prohibiting an external dtd. (ZDI-CAN-11923)
A vulnerability has been identified in Solid Edge SE2020 (All versions < SE2020MP13), Solid Edge SE2021 (All Versions < SE2021MP4). Affected applications lack proper validation of user-supplied data when parsing DFT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12049)
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0). Unpriviledged users can access services when guessing the url. An attacker could impact availability, integrity and gain information from logs and templates of the service.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V3.0). The webserver could allow unauthorized actions via special urls for unpriviledged users. The settings of the UMC authorization server could be changed to add a rogue server by an attacker authenticating with unprivilege user rights.
A vulnerability has been identified in LOGO! 12/24RCE (6ED1052-1MD08-0BA1) (All versions), LOGO! 12/24RCEo (6ED1052-2MD08-0BA1) (All versions), LOGO! 230RCE (6ED1052-1FB08-0BA1) (All versions), LOGO! 230RCEo (6ED1052-2FB08-0BA1) (All versions), LOGO! 24CE (6ED1052-1CC08-0BA1) (All versions), LOGO! 24CEo (6ED1052-2CC08-0BA1) (All versions), LOGO! 24RCE (6ED1052-1HB08-0BA1) (All versions), LOGO! 24RCEo (6ED1052-2HB08-0BA1) (All versions), SIPLUS LOGO! 12/24RCE (6AG1052-1MD08-7BA1) (All versions), SIPLUS LOGO! 12/24RCEo (6AG1052-2MD08-7BA1) (All versions), SIPLUS LOGO! 230RCE (6AG1052-1FB08-7BA1) (All versions), SIPLUS LOGO! 230RCEo (6AG1052-2FB08-7BA1) (All versions), SIPLUS LOGO! 24CE (6AG1052-1CC08-7BA1) (All versions), SIPLUS LOGO! 24CEo (6AG1052-2CC08-7BA1) (All versions), SIPLUS LOGO! 24RCE (6AG1052-1HB08-7BA1) (All versions), SIPLUS LOGO! 24RCEo (6AG1052-2HB08-7BA1) (All versions). The control logic (CL) the LOGO! 8 executes could be manipulated in a way that could cause the device executing the CL to improperly handle the manipulation and crash. After successful execution of the attack, the device needs to be manually reset.
ssri 5.2.2-8.0.0, fixed in 8.0.1, processes SRIs using a regular expression which is vulnerable to a denial of service. Malicious SRIs could take an extremely long time to process, leading to denial of service. This issue only affects consumers using the strict option.
A DNS client stack-based buffer overflow in ipdnsc_decode_name() affects Wind River VxWorks 6.5 through 7. NOTE: This vulnerability only affects products that are no longer supported by the maintainer
In SIMATIC MV400 family versions prior to v7.0.6, the ISN generator is initialized with a constant value and has constant increments. An attacker could predict and hijack TCP sessions.
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160.
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory.
When loading a specially crafted file, Luxion KeyShot versions prior to 10.1, Luxion KeyShot Viewer versions prior to 10.1, Luxion KeyShot Network Rendering versions prior to 10.1, and Luxion KeyVR versions prior to 10.1 are, while processing the extraction of temporary files, suffering from a directory traversal vulnerability, which allows an attacker to store arbitrary scripts into automatic startup folders.
Luxion KeyShot versions prior to 10.1, Luxion KeyShot Viewer versions prior to 10.1, Luxion KeyShot Network Rendering versions prior to 10.1, and Luxion KeyVR versions prior to 10.1 have multiple NULL pointer dereference issues while processing project files, which may allow an attacker to execute arbitrary code.
Luxion KeyShot versions prior to 10.1, Luxion KeyShot Viewer versions prior to 10.1, Luxion KeyShot Network Rendering versions prior to 10.1, and Luxion KeyVR versions prior to 10.1 are vulnerable to multiple out-of-bounds write issues while processing project files, which may allow an attacker to execute arbitrary code.
Luxion KeyShot versions prior to 10.1, Luxion KeyShot Viewer versions prior to 10.1, Luxion KeyShot Network Rendering versions prior to 10.1, and Luxion KeyVR versions prior to 10.1 are vulnerable to an attack because the .bip documents display a “load” command, which can be pointed to a .dll from a remote network share. As a result, the .dll entry point can be executed without sufficient UI warning.
Luxion KeyShot versions prior to 10.1, Luxion KeyShot Viewer versions prior to 10.1, Luxion KeyShot Network Rendering versions prior to 10.1, and Luxion KeyVR versions prior to 10.1 are vulnerable to an out-of-bounds read while processing project files, which may allow an attacker to execute arbitrary code.
BIND servers are vulnerable if they are running an affected version and are configured to use GSS-TSIG features. In a configuration which uses BIND's default settings the vulnerable code path is not exposed, but a server can be rendered vulnerable by explicitly setting valid values for the tkey-gssapi-keytab or tkey-gssapi-credentialconfiguration options. Although the default configuration is not vulnerable, GSS-TSIG is frequently used in networks where BIND is integrated with Samba, as well as in mixed-server environments that combine BIND servers with Active Directory domain controllers. The most likely outcome of a successful exploitation of the vulnerability is a crash of the named process. However, remote code execution, while unproven, is theoretically possible. Affects: BIND 9.5.0 -> 9.11.27, 9.12.0 -> 9.16.11, and versions BIND 9.11.3-S1 -> 9.11.27-S1 and 9.16.8-S1 -> 9.16.11-S1 of BIND Supported Preview Edition. Also release versions 9.17.0 -> 9.17.1 of the BIND 9.17 development branch
The OpenSSL public API function X509_issuer_and_serial_hash() attempts to create a unique hash value based on the issuer and serial number data contained within an X509 certificate. However it fails to correctly handle any errors that may occur while parsing the issuer field (which might occur if the issuer field is maliciously constructed). This may subsequently result in a NULL pointer deref and a crash leading to a potential denial of service attack. The function X509_issuer_and_serial_hash() is never directly called by OpenSSL itself so applications are only vulnerable if they use this function directly and they use it on certificates that may have been obtained from untrusted sources. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x).
OpenSSL 1.0.2 supports SSLv2. If a client attempts to negotiate SSLv2 with a server that is configured to support both SSLv2 and more recent SSL and TLS versions then a check is made for a version rollback attack when unpadding an RSA signature. Clients that support SSL or TLS versions greater than SSLv2 are supposed to use a special form of padding. A server that supports greater than SSLv2 is supposed to reject connection attempts from a client where this special form of padding is present, because this indicates that a version rollback has occurred (i.e. both client and server support greater than SSLv2, and yet this is the version that is being requested). The implementation of this padding check inverted the logic so that the connection attempt is accepted if the padding is present, and rejected if it is absent. This means that such as server will accept a connection if a version rollback attack has occurred. Further the server will erroneously reject a connection if a normal SSLv2 connection attempt is made. Only OpenSSL 1.0.2 servers from version 1.0.2s to 1.0.2x are affected by this issue. In order to be vulnerable a 1.0.2 server must: 1) have configured SSLv2 support at compile time (this is off by default), 2) have configured SSLv2 support at runtime (this is off by default), 3) have configured SSLv2 ciphersuites (these are not in the default ciphersuite list) OpenSSL 1.1.1 does not have SSLv2 support and therefore is not vulnerable to this issue. The underlying error is in the implementation of the RSA_padding_check_SSLv23() function. This also affects the RSA_SSLV23_PADDING padding mode used by various other functions. Although 1.1.1 does not support SSLv2 the RSA_padding_check_SSLv23() function still exists, as does the RSA_SSLV23_PADDING padding mode. Applications that directly call that function or use that padding mode will encounter this issue. However since there is no support for the SSLv2 protocol in 1.1.1 this is considered a bug and not a security issue in that version. OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.0.2y (Affected 1.0.2s-1.0.2x).
Lodash versions prior to 4.17.21 are vulnerable to Command Injection via the template function.
Lodash versions prior to 4.17.21 are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.
A vulnerability has been identified in SCALANCE W780 and W740 (IEEE 802.11n) family (All versions < V6.3). Sending specially crafted packets through the ARP protocol to an affected device could cause a partial denial-of-service, preventing the device to operate normally for a short period of time.
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of RAS files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to access data in the context of the current process. (ZDI-CAN-12283)
A vulnerability has been identified in SIMARIS configuration (All versions < V4.0.1). During installation to default target folder, incorrect permissions are configured for the application folder and subfolders which could allow an attacker to gain persistence or potentially escalate privileges should a user with elevated credentials log onto the machine.
A vulnerability has been identified in APOGEE PXC Compact (BACnet) (All versions < V3.5.5), APOGEE PXC Compact (P2 Ethernet) (All versions < V2.8.20), APOGEE PXC Modular (BACnet) (All versions < V3.5.5), APOGEE PXC Modular (P2 Ethernet) (All versions < V2.8.20), Nucleus NET (All versions < V5.2), Nucleus ReadyStart V3 (All versions < V2012.12), Nucleus Source Code (All versions), PLUSCONTROL 1st Gen (All versions), TALON TC Compact (BACnet) (All versions < V3.5.5), TALON TC Modular (BACnet) (All versions < V3.5.5). Initial Sequence Numbers (ISNs) for TCP connections are derived from an insufficiently random source. As a result, the ISN of current and future TCP connections could be predictable. An attacker could hijack existing sessions or spoof future ones.
Cscape (All versions prior to 9.90 SP3.5) lacks proper validation of user-supplied data when parsing project files. This could lead to an out-of-bounds read. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of PLT files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to access data in the context of the current process. (ZDI-CAN-12209)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of HPG files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to access data in the context of the current process. (ZDI-CAN-12207)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of PCT files. This could result in a memory corruption condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12182)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of TGA files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12178)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of CGM files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to access data in the context of the current process. (ZDI-CAN-12163)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing TIFF files. This could lead to pointer dereferences of a value obtained from untrusted source. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12158)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.2), Teamcenter Visualization (All versions < V13.1.0.2). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to access data in the context of the current process. (ZDI-CAN-12043)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.2), Teamcenter Visualization (All versions < V13.1.0.2). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in a stack based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12041)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing BMP files. This can result in a memory corruption condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12018)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.2), Teamcenter Visualization (All versions < V13.1.0.2). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information. (ZDI-CAN-12042)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.2), Teamcenter Visualization (All versions < V13.1.0.2). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to leak information. (ZDI-CAN-12040)
A vulnerability has been identified in DIGSI 4 (All versions < V4.94 SP1 HF 1). Several folders in the %PATH% are writeable by normal users. As these folders are included in the search for dlls, an attacker could place dlls there with code executed by SYSTEM.
A vulnerability has been identified in PCS neo (Administration Console) (All versions < V3.1), TIA Portal (V15, V15.1 and V16). Manipulating certain files in specific folders could allow a local attacker to execute code with SYSTEM privileges. The security vulnerability could be exploited by an attacker with a valid account and limited access rights on the system.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP1 Update 1), SINEMA Server (All versions < V14.0 SP2 Update 2). When uploading files to an affected system using a zip container, the system does not correctly check if the relative file path of the extracted files is still within the intended target directory. With this an attacker could create or overwrite arbitrary files on an affected system. This type of vulnerability is also known as 'Zip-Slip'. (ZDI-CAN-12054)
A vulnerability has been identified in SIMATIC HMI Comfort Panels (incl. SIPLUS variants) (All versions < V16 Update 3a), SIMATIC HMI KTP Mobile Panels (All versions < V16 Update 3a), SINAMICS GH150 (All versions), SINAMICS GL150 (with option X30) (All versions), SINAMICS GM150 (with option X30) (All versions), SINAMICS SH150 (All versions), SINAMICS SL150 (All versions), SINAMICS SM120 (All versions), SINAMICS SM150 (All versions), SINAMICS SM150i (All versions). Affected devices with enabled telnet service do not require authentication for this service. This could allow a remote attacker to gain full access to the device. (ZDI-CAN-12046)
A vulnerability has been identified in SIMATIC PCS 7 (All versions), SIMATIC WinCC (All versions < V7.5 SP2). Due to an insecure password verification process, an attacker could bypass the password protection set on protected files, thus being granted access to the protected content, circumventing authentication.
An issue was discovered in Open Design Alliance Drawings SDK before 2021.11. A stack-based buffer overflow vulnerability exists when the recover operation is run with malformed .DXF and .DWG files. This can allow attackers to cause a crash potentially enabling a denial of service attack (Crash, Exit, or Restart) or possible code execution.
An issue was discovered in Open Design Alliance Drawings SDK before 2021.11. A Type Confusion issue exists when rendering malformed .DXF and .DWG files. This can allow attackers to cause a crash, potentially enabling a denial of service attack (Crash, Exit, or Restart).
An issue was discovered in Open Design Alliance Drawings SDK before 2021.11. A NULL pointer dereference exists when rendering malformed .DXF and .DWG files. This can allow attackers to cause a crash, potentially enabling a denial of service attack (Crash, Exit, or Restart).
An issue was discovered in Open Design Alliance Drawings SDK before 2021.11. A Type Conversion issue exists when rendering malformed .DXF and .DWG files. This can allow attackers to cause a crash, potentially enabling a denial of service attack (Crash, Exit, or Restart).
An issue was discovered in Open Design Alliance Drawings SDK before 2021.12. A memory corruption vulnerability exists when reading malformed DGN files. It can allow attackers to cause a crash, potentially enabling denial of service (Crash, Exit, or Restart).
An issue was discovered in Open Design Alliance Drawings SDK before 2021.12. A memory allocation with excessive size vulnerability exists when reading malformed DGN files, which allows attackers to cause a crash, potentially enabling denial of service (crash, exit, or restart).
A vulnerability has been identified in SCALANCE X-200RNA switch family (All versions < V3.2.7), SCALANCE X-300 switch family (incl. X408 and SIPLUS NET variants) (All versions < V4.1.0). Devices do not create a new unique private key after factory reset. An attacker could leverage this situation to a man-in-the-middle situation and decrypt previously captured traffic.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.5), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0), SCALANCE X-200RNA switch family (All versions < V3.2.7). Devices create a new unique key upon factory reset, except when used with C-PLUG. When used with C-PLUG the devices use the hardcoded private RSA-key shipped with the firmware-image. An attacker could leverage this situation to a man-in-the-middle situation and decrypt previously captured traffic.
A vulnerability has been identified in Opcenter Execution Core (V8.2), Opcenter Execution Core (V8.3). The application contains an information leakage vulnerability in the handling of web client sessions. A local attacker who has access to the Web Client Session Storage could disclose the passwords of currently logged-in users.
A vulnerability has been identified in Solid Edge SE2020 (All Versions < SE2020MP12), Solid Edge SE2021 (All Versions < SE2021MP2). Affected applications lack proper validation of user-supplied data when parsing DFT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2020 (All Versions < SE2020MP12), Solid Edge SE2021 (All Versions < SE2021MP2). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could lead to a stack based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Solid Edge SE2020 (All Versions < SE2020MP12), Solid Edge SE2021 (All Versions < SE2021MP2), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing PAR files. This can result in an out of bounds write past the memory location that is a read only image address. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11885)
A vulnerability has been identified in Solid Edge SE2020 (All Versions < SE2020MP12), Solid Edge SE2021 (All Versions < SE2021MP2). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could result in a out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in Solid Edge SE2020 (All Versions < SE2020MP12), Solid Edge SE2021 (All Versions < SE2021MP2). Affected applications lack proper validation of user-supplied data when parsing PAR files. This could result in an out of bounds write into uninitialized memory. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of CG4 files. This could result in a memory access past the end of an allocated buffer. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12027)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of SGI and RGB files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11992)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of PCX files. This could result in a heap-based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing CGM files. This could lead to a stack based buffer overflow while trying to copy to a buffer in the font index handling function. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing CGM files. This could lead to a stack based buffer overflow while trying to copy to a buffer during font string handling. An attacker could leverage this vulnerability to execute code in the context of the current process.
A vulnerability has been identified in JT2Go (All versions < V13.1.0.2), Teamcenter Visualization (All versions < V13.1.0.2). Affected applications lack proper validation of user-supplied data when parsing ASM files. This could lead to pointer dereferences of a value obtained from untrusted source. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11899)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing ASM files. A crafted ASM file could trigger a type confusion condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11897)
A vulnerability has been identified in JT2Go (All versions < V13.1.0.1), Solid Edge SE2020 (All Versions < SE2020MP12), Solid Edge SE2021 (All Versions < SE2021MP2), Teamcenter Visualization (All versions < V13.1.0.1). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in a stack based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11892)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of PAR files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11891)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of TGA files. This could lead to a heap-based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12016, ZDI-CAN-12017)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of JT files. This could lead to a heap-based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-12014)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of RGB and SGI files. This could result in a heap-based buffer overflow. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11986, ZDI-CAN-11994)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing of JT files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11972)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing PDF files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11900)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing CG4 and CGM files. This could result in an out of bounds write past the end of an allocated structure. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11898)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). When opening a specially crafted xml file, the application could disclose arbitrary files to remote attackers. This is because of the passing of specially crafted content to the underlying XML parser without taking proper restrictions such as prohibiting an external dtd. (ZDI-CAN-11890)
A vulnerability has been identified in JT2Go (All versions < V13.1.0), Teamcenter Visualization (All versions < V13.1.0). Affected applications lack proper validation of user-supplied data when parsing JT files. A crafted JT file could trigger a type confusion condition. An attacker could leverage this vulnerability to execute code in the context of the current process. (ZDI-CAN-11881)
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.5), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0). The web server of the affected devices contains a vulnerability that may lead to a buffer overflow condition. An attacker could cause this condition on the webserver by sending a specially crafted request. The webserver could stop and not recover anymore.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.5), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0), SCALANCE X-300 switch family (incl. X408 and SIPLUS NET variants) (All versions < V4.1.0). The webserver of the affected devices contains a vulnerability that may lead to a heap overflow condition. An attacker could cause this condition on the webserver by sending specially crafted requests. This could stop the webserver temporarily.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.5), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0). The vulnerability could allow an unauthenticated attacker to reboot the device over the network by using special urls from integrated web server of the affected products.
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 allow two copies of a header field in an HTTP request (for example, two Transfer-Encoding header fields). In this case, Node.js identifies the first header field and ignores the second. This can lead to HTTP Request Smuggling.
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 are vulnerable to a use-after-free bug in its TLS implementation. When writing to a TLS enabled socket, node::StreamBase::Write calls node::TLSWrap::DoWrite with a freshly allocated WriteWrap object as first argument. If the DoWrite method does not return an error, this object is passed back to the caller as part of a StreamWriteResult structure. This may be exploited to corrupt memory leading to a Denial of Service or potentially other exploits.
A vulnerability has been identified in SICAM A8000 CP-8000 (All versions < V16), SICAM A8000 CP-8021 (All versions < V16), SICAM A8000 CP-8022 (All versions < V16). A web server misconfiguration of the affected device can cause insecure ciphers usage by a user´s browser. An attacker in a privileged position could decrypt the communication and compromise confidentiality and integrity of the transmitted information.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). The password used for authentication for the LOGO! Website and the LOGO! Access Tool is sent in a recoverable format. An attacker with access to the network traffic could derive valid logins.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3), LOGO! Soft Comfort (All versions < V8.3). The LOGO! program files generated and used by the affected components offer the possibility to save user-defined functions (UDF) in a password protected way. This protection is implemented in the software that displays the information. An attacker could reverse engineer the UDFs directly from stored program files.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). The firmware update of affected devices contains the private RSA key that is used as a basis for encryption of communication with the device.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Due to the usage of an insecure random number generation function and a deprecated cryptographic function, an attacker could extract the key that is used when communicating with an affected device on port 8080/tcp.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3), LOGO! Soft Comfort (All versions < V8.3). The encryption of program data for the affected devices uses a static key. An attacker could use this key to extract confidential information from protected program files.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Due to the usage of an outdated cipher mode on port 10005/tcp, an attacker could extract the encryption key from a captured communication with the device.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). The implemented encryption for communication with affected devices is prone to replay attacks due to the usage of a static key. An attacker could change the password or change the configuration on any affected device if using prepared messages that were generated for another device.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). A service available on port 10005/tcp of the affected devices could allow complete access to all services without authorization. An attacker could gain full control over an affected device, if he has access to this service. The system manual recommends to protect access to this port.
A vulnerability has been identified in SIMATIC ET 200SP Open Controller (incl. SIPLUS variants) (V20.8), SIMATIC S7-1500 Software Controller (V20.8). The web server of the affected products contains a vulnerability that could allow a remote attacker to trigger a denial-of-service condition by sending a specially crafted HTTP request.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow attackers to traverse through the file system of the server based by sending specially crafted packets over the network without authentication.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow SQL injection attacks if an attacker is able to modify content of particular web pages.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow injections that could lead to XSS attacks if unsuspecting users are tricked into accessing a malicious link.
A vulnerability has been identified in XHQ (All Versions < 6.1). The web interface could allow Cross-Site Scripting (XSS) attacks if an attacker is able to modify content of particular web pages, causing the application to behave in unexpected ways for legitimate users.
A vulnerability has been identified in XHQ (All Versions < 6.1). The application's web server could expose non-sensitive information about the server's architecture. This could allow an attacker to adapt further attacks to the version in place.
curl 7.41.0 through 7.73.0 is vulnerable to an improper check for certificate revocation due to insufficient verification of the OCSP response.
curl 7.21.0 to and including 7.73.0 is vulnerable to uncontrolled recursion due to a stack overflow issue in FTP wildcard match parsing.
A malicious server can use the FTP PASV response to trick curl 7.73.0 and earlier into connecting back to a given IP address and port, and this way potentially make curl extract information about services that are otherwise private and not disclosed, for example doing port scanning and service banner extractions.
Due to use of a dangling pointer, libcurl 7.29.0 through 7.71.1 can use the wrong connection when sending data.
curl 7.20.0 through 7.70.0 is vulnerable to improper restriction of names for files and other resources that can lead too overwriting a local file when the -J flag is used.
curl 7.62.0 through 7.70.0 is vulnerable to an information disclosure vulnerability that can lead to a partial password being leaked over the network and to the DNS server(s).
An issue was discovered in uIP 1.0, as used in Contiki 3.0 and other products. When the Urgent flag is set in a TCP packet, and the stack is configured to ignore the urgent data, the stack attempts to use the value of the Urgent pointer bytes to separate the Urgent data from the normal data, by calculating the offset at which the normal data should be present in the global buffer. However, the length of this offset is not checked; therefore, for large values of the Urgent pointer bytes, the data pointer can point to memory that is way beyond the data buffer in uip_process in uip.c.
An issue was discovered in Contiki through 3.0. An Out-of-Bounds Read vulnerability exists in the uIP TCP/IP Stack component when calculating the checksums for IP packets in upper_layer_chksum in net/ipv4/uip.c.
The package ua-parser-js before 0.7.23 are vulnerable to Regular Expression Denial of Service (ReDoS) in multiple regexes (see linked commit for more info).
The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w).
The package y18n before 3.2.2, 4.0.1 and 5.0.5, is vulnerable to Prototype Pollution.
A vulnerability has been identified in SIMATIC S7-300 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions), SIMATIC TDC CPU555 (All versions), SINUMERIK 840D sl (All versions). Sending multiple specially crafted packets to the affected devices could cause a Denial-of-Service on port 102. A cold restart is required to recover the service.
Insufficient control flow management in subsystem for Intel(R) CSME versions before 11.8.80, 11.12.80, 11.22.80, 12.0.70, 13.0.40, 13.30.10, 14.0.45 and 14.5.25 , Intel(R) TXE versions before 3.1.80 and 4.0.30 may allow an unauthenticated user to potentially enable escalation of privilege via physical access.
Improper initialization in subsystem for Intel(R) CSME versions before12.0.70, 13.0.40, 13.30.10, 14.0.45 and 14.5.25, Intel(R) TXE versions before 4.0.30 Intel(R) SPS versions before E3_05.01.04.200 may allow a privileged user to potentially enable escalation of privilege via local access.
Improper isolation of shared resources in some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
Improper buffer restrictions in BIOS firmware for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access.
Improper input validation in BIOS firmware for some Intel(R) Processors may allow an authenticated user to potentially enable escalation of privilege via local access.
Axios NPM package 0.21.0 contains a Server-Side Request Forgery (SSRF) vulnerability where an attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.
A vulnerability has been identified in SIPORT MP (All versions < 3.2.1). Vulnerable versions of the device could allow an authenticated attacker to impersonate other users of the system and perform (potentially administrative) actions on behalf of those users if the single sign-on feature ("Allow logon without password") is enabled.
A vulnerability has been identified in Desigo Insight (All versions). Some error messages in the web application show the absolute path to the requested resource. This could allow an authenticated attacker to retrieve additional information about the host system.
A vulnerability has been identified in Desigo Insight (All versions). The device does not properly set the X-Frame-Options HTTP Header which makes it vulnerable to Clickjacking attacks. This could allow an unauthenticated attacker to retrieve or modify data in the context of a legitimate user by tricking that user to click on a website controlled by the attacker.
A vulnerability has been identified in Desigo Insight (All versions). The web service does not properly apply input validation for some query parameters in a reserved area. This could allow an authenticated attacker to retrieve data via a content-based blind SQL injection attack.
A vulnerability has been identified in SIMATIC S7-300 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions), SIMATIC S7-400 CPU family (incl. SIPLUS variants) (All versions), SIMATIC WinAC RTX (F) 2010 (All versions), SINUMERIK 840D sl (All versions). The authentication protocol between a client and a PLC via port 102/tcp (ISO-TSAP) insufficiently protects the transmitted password. This could allow an attacker that is able to intercept the network traffic to obtain valid PLC credentials.
A vulnerability has been identified in Spectrum Power 4 (All versions < V4.70 SP8). If configured in an insecure manner, the web server might be susceptible to a directory listing attack.
A vulnerability has been identified in Polarion Subversion Webclient (All versions). The web interface could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link. Successful exploitation requires user interaction by a legitimate user, who must be authenticated to the web interface. A successful attack could allow an attacker to trigger actions via the web interface that the legitimate user is allowed to perform. This could allow the attacker to read or modify contents of the web application.
A vulnerability has been identified in Polarion Subversion Webclient (All versions). The Polarion subversion web application does not filter user input in a way that prevents Cross-Site Scripting. If a user is enticed into passing specially crafted, malicious input to the web client (e.g. by clicking on a malicious URL with embedded JavaScript), then JavaScript code can be returned and may then be executed by the user’s client. Various actions could be triggered by running malicious JavaScript code.
A vulnerability has been identified in SIMATIC HMI Unified Comfort Panels (All versions <= V16). Affected devices insufficiently validate authentication attempts as the information given can be truncated to match only a set number of characters versus the whole provided string. This could allow a remote attacker to discover user passwords and obtain access to the Sm@rt Server via a brute-force attack.
A vulnerability has been identified in SIMATIC HMI Basic Panels 2nd Generation (incl. SIPLUS variants) (All versions < V16), SIMATIC HMI Comfort Panels (incl. SIPLUS variants) (All versions <= V16), SIMATIC HMI Mobile Panels (All versions <= V16), SIMATIC HMI Unified Comfort Panels (All versions <= V16). Affected devices insufficiently block excessive authentication attempts. This could allow a remote attacker to discover user passwords and obtain access to the Sm@rt Server via a brute-force attack.
A vulnerability has been identified in Siveillance Video Client (All versions). In environments where Windows NTLM authentication is enabled the affected client application transmits usernames to the server in cleartext. This could allow an attacker in a privileged network position to obtain valid adminstrator login names and use this information to launch further attacks.
A vulnerability has been identified in Spectrum Power 4 (All versions < V4.70 SP8). Insecure storage of sensitive information in the configuration files could allow the retrieval of user names.
A vulnerability has been identified in License Management Utility (LMU) (All versions < V2.4). The lmgrd service of the affected application is executed with local SYSTEM privileges on the server while its configuration can be modified by local users. The vulnerability could allow a local authenticated attacker to execute arbitrary commands on the server with local SYSTEM privileges.
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.10.2). Multiple services of the affected application are executed with SYSTEM privileges while the call path is not quoted. This could allow a local attacker to inject arbitrary commands that are execeuted instead of the legitimate service.
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.10.2). The directory of service executables of the affected application could allow a local attacker to include arbitrary commands that are executed with SYSTEM privileges when the system restarts.
A vulnerability has been identified in SIMATIC RTLS Locating Manager (All versions < V2.10.2). The start-stop scripts for the services of the affected application could allow a local attacker to include arbitrary commands that are executed when services are started or stopped interactively by system administrators.
A vulnerability has been identified in Automation License Manager 5 (All versions), Automation License Manager 6 (All versions < V6.0.8). The application does not properly validate the users' privileges when executing some operations, which could allow a user with low permissions to arbitrary modify files that should be protected against writing.
A vulnerability has been identified in Desigo CC (V4.x), Desigo CC (V3.x), Desigo CC Compact (V4.x), Desigo CC Compact (V3.x). Affected applications are delivered with a 3rd party component (BIRT) that contains a remote code execution vulnerability if the Advanced Reporting Engine is enabled. The vulnerability could allow a remote unauthenticated attacker to execute arbitrary commands on the server with SYSTEM privileges.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (V1.81.01 - V1.81.03), LOGO! 8 BM (incl. SIPLUS variants) (V1.82.01), LOGO! 8 BM (incl. SIPLUS variants) (V1.82.02). A buffer overflow vulnerability exists in the Web Server functionality of the device. A remote unauthenticated attacker could send a specially crafted HTTP request to cause a memory corruption, potentially resulting in remote code execution.
A vulnerability has been identified in SIMATIC HMI Basic Panels 1st Generation (incl. SIPLUS variants) (All versions), SIMATIC HMI Basic Panels 2nd Generation (incl. SIPLUS variants) (All versions), SIMATIC HMI Comfort Panels (incl. SIPLUS variants) (All versions), SIMATIC HMI KTP700F Mobile Arctic (All versions), SIMATIC HMI Mobile Panels 2nd Generation (All versions), SIMATIC WinCC Runtime Advanced (All versions). Unencrypted communication between the configuration software and the respective device could allow an attacker to capture potential plain text communication and have access to sensitive information.
A vulnerability has been identified in Opcenter Execution Discrete (All versions < V3.2), Opcenter Execution Foundation (All versions < V3.2), Opcenter Execution Process (All versions < V3.2), Opcenter Intelligence (All versions < V3.3), Opcenter Quality (All versions < V11.3), Opcenter RD&L (V8.0), SIMATIC IT LMS (All versions < V2.6), SIMATIC IT Production Suite (All versions < V8.0), SIMATIC Notifier Server for Windows (All versions), SIMATIC PCS neo (All versions < V3.0 SP1), SIMATIC STEP 7 (TIA Portal) V15 (All versions < V15.1 Update 5), SIMATIC STEP 7 (TIA Portal) V16 (All versions < V16 Update 2), SIMOCODE ES V15.1 (All versions < V15.1 Update 4), SIMOCODE ES V16 (All versions < V16 Update 1), Soft Starter ES V15.1 (All versions < V15.1 Update 3), Soft Starter ES V16 (All versions < V16 Update 1). Sending a specially crafted packet to the affected service could cause a partial remote denial-of-service, that would cause the service to restart itself.
A vulnerability has been identified in Opcenter Execution Discrete (All versions < V3.2), Opcenter Execution Foundation (All versions < V3.2), Opcenter Execution Process (All versions < V3.2), Opcenter Intelligence (All versions < V3.3), Opcenter Quality (All versions < V11.3), Opcenter RD&L (V8.0), SIMATIC IT LMS (All versions < V2.6), SIMATIC IT Production Suite (All versions < V8.0), SIMATIC Notifier Server for Windows (All versions), SIMATIC PCS neo (All versions < V3.0 SP1), SIMATIC STEP 7 (TIA Portal) V15 (All versions < V15.1 Update 5), SIMATIC STEP 7 (TIA Portal) V16 (All versions < V16 Update 2), SIMOCODE ES V15.1 (All versions < V15.1 Update 4), SIMOCODE ES V16 (All versions < V16 Update 1), Soft Starter ES V15.1 (All versions < V15.1 Update 3), Soft Starter ES V16 (All versions < V16 Update 1). Sending multiple specially crafted packets to the affected service could cause a partial remote denial-of-service, that would cause the service to restart itself. On some cases the vulnerability could leak random information from the remote service.
A vulnerability has been identified in SIMATIC S7-200 SMART CPU family (All versions >= V2.2 < V2.5.1). Affected devices do not properly handle large numbers of new incomming connections and could crash under certain circumstances. An attacker may leverage this to cause a Denial-of-Service situation.
A vulnerability has been identified in Opcenter Execution Discrete (All versions < V3.2), Opcenter Execution Foundation (All versions < V3.2), Opcenter Execution Process (All versions < V3.2), Opcenter Intelligence (All versions < V3.3), Opcenter Quality (All versions < V11.3), Opcenter RD&L (V8.0), SIMATIC Notifier Server for Windows (All versions), SIMATIC PCS neo (All versions < V3.0 SP1), SIMATIC STEP 7 (TIA Portal) V15 (All versions < V15.1 Update 5), SIMATIC STEP 7 (TIA Portal) V16 (All versions < V16 Update 2), SIMOCODE ES V15.1 (All versions < V15.1 Update 4), SIMOCODE ES V16 (All versions < V16 Update 1), Soft Starter ES V15.1 (All versions < V15.1 Update 3), Soft Starter ES V16 (All versions < V16 Update 1). A component within the affected application calls a helper binary with SYSTEM privileges during startup while the call path is not quoted. This could allow a local attacker with administrative privileges to execute code with SYSTEM level privileges.
A vulnerability has been identified in Camstar Enterprise Platform (All versions), Opcenter Execution Core (All versions < V8.2). Authenticated users could have access to resources they normally would not have. This vulnerability could allow an attacker to view internal information and perform unauthorized changes.
A vulnerability has been identified in Camstar Enterprise Platform (All versions), Opcenter Execution Core (All versions < V8.2). Through the use of several vulnerable fields of the application, an authenticated user could perform an SQL Injection attack by passing a modified SQL query downstream to the back-end server. The exploit of this vulnerability could be used to read, and potentially modify application data to which the user has access to.
A vulnerability has been identified in Camstar Enterprise Platform (All versions), Opcenter Execution Core (All versions < V8.2), Opcenter Execution Core (V8.2). An authenticated user with the ability to create containers, packages or register defects could perform stored Cross-Site Scripting (XSS) attacks within the vulnerable software. The impact of this attack could result in the session cookies of legitimate users being stolen. Should the attacker gain access to these cookies, they could then hijack the session and perform arbitrary actions in the name of the victim.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An error in the challenge-response procedure could allow an attacker to replay authentication traffic and gain access to protected areas of the web application.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An attacker with access to the network could be able to install specially crafted firmware to the device.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). The web server could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). A buffer overflow in various positions of the web application might enable an attacker with access to the web application to execute arbitrary code over the network.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). A stored Cross-Site-Scripting (XSS) vulnerability is present in different locations of the web application. An attacker might be able to take over a session of a legitimate user.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An attacker with local access to the device might be able to retrieve some passwords in clear text.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An attacker in a privileged network position between a legitimate user and the web server might be able to conduct a Man-in-the-middle attack and gain read and write access to the transmitted data.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). An attacker with access to the device's web server might be able to execute administrative commands without authentication.
A vulnerability has been identified in SICAM MMU (All versions < V2.05), SICAM SGU (All versions), SICAM T (All versions < V2.18). By performing a flooding attack against the web server, an attacker might be able to gain read access to the device's memory, possibly revealing confidential information.
It was discovered that websockets.c in LibVNCServer prior to 0.9.12 did not properly decode certain WebSocket frames. A malicious attacker could exploit this by sending specially crafted WebSocket frames to a server, causing a heap-based buffer overflow.
In SQLite before 3.32.3, select.c mishandles query-flattener optimization, leading to a multiSelectOrderBy heap overflow because of misuse of transitive properties for constant propagation.
An issue was discovered in LibVNCServer before 0.9.13. libvncclient/rfbproto.c does not limit TextChat size.
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/rre.c allows out-of-bounds access via encodings.
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/hextile.c allows out-of-bounds access via encodings.
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/corre.c allows out-of-bounds access via encodings.
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/scale.c has a pixel_value integer overflow.
An issue was discovered in LibVNCServer before 0.9.13. An improperly closed TCP connection causes an infinite loop in libvncclient/sockets.c.
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/rfbregion.c has a NULL pointer dereference.
An issue was discovered in LibVNCServer before 0.9.13. libvncclient/tls_openssl.c has a NULL pointer dereference.
An issue was discovered in LibVNCServer before 0.9.13. libvncserver/ws_decode.c can lead to a crash because of unaligned accesses in hybiReadAndDecode.
libvncclient/sockets.c in LibVNCServer before 0.9.13 has a buffer overflow via a long socket filename.
An issue was discovered in LibVNCServer before 0.9.13. There is an information leak (of uninitialized memory contents) in the libvncclient/rfbproto.c ConnectToRFBRepeater function.
Incomplete cleanup from specific special register read operations in some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions). The vulnerability could lead to an attacker reading and modifying the device configuration and obtain project files from affected devices. The security vulnerability could be exploited by an unauthenticated attacker with network access to port 135/tcp. No user interaction is required to exploit this security vulnerability. The vulnerability impacts confidentiality, integrity, and availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 and earlier (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3), SIMATIC PDM (All versions < V9.2), SIMATIC STEP 7 V5.X (All versions < V5.6 SP2 HF3), SINAMICS STARTER (containing STEP 7 OEM version) (All versions < V5.4 HF2). A buffer overflow vulnerability could allow a local attacker to cause a Denial-of-Service situation. The security vulnerability could be exploited by an attacker with local access to the affected systems. Successful exploitation requires user privileges but no user interaction. The vulnerability could allow an attacker to compromise the availability of the system as well as to have access to confidential information.
A vulnerability has been identified in SIMATIC PCS 7 V8.2 and earlier (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3), SIMATIC PDM (All versions < V9.2), SIMATIC STEP 7 V5.X (All versions < V5.6 SP2 HF3), SINAMICS STARTER (containing STEP 7 OEM version) (All versions < V5.4 HF2). A DLL Hijacking vulnerability could allow a local attacker to execute code with elevated privileges. The security vulnerability could be exploited by an attacker with local access to the affected systems. Successful exploitation requires user privileges but no user interaction. The vulnerability could allow an attacker to compromise the availability of the system as well as to have access to confidential information.
A vulnerability has been identified in SIMATIC Automation Tool (All versions < V4 SP2), SIMATIC NET PC Software V14 (All versions < V14 SP1 Update 14), SIMATIC NET PC Software V15 (All versions), SIMATIC NET PC Software V16 (All versions < V16 Upd3), SIMATIC PCS neo (All versions < V3.0 SP1), SIMATIC ProSave (All versions < V17), SIMATIC S7-1500 Software Controller (All versions < V21.8), SIMATIC STEP 7 (TIA Portal) V13 (All versions < V13 SP2 Update 4), SIMATIC STEP 7 (TIA Portal) V14 (All versions < V14 SP1 Update 10), SIMATIC STEP 7 (TIA Portal) V15 (All versions < V15.1 Update 5), SIMATIC STEP 7 (TIA Portal) V16 (All versions < V16 Update 2), SIMATIC STEP 7 V5 (All versions < V5.6 SP2 HF3), SIMATIC WinCC OA V3.16 (All versions < V3.16 P018), SIMATIC WinCC OA V3.17 (All versions < V3.17 P003), SIMATIC WinCC Runtime Advanced (All versions < V16 Update 2), SIMATIC WinCC Runtime Professional V13 (All versions < V13 SP2 Update 4), SIMATIC WinCC Runtime Professional V14 (All versions < V14 SP1 Update 10), SIMATIC WinCC Runtime Professional V15 (All versions < V15.1 Update 5), SIMATIC WinCC Runtime Professional V16 (All versions < V16 Update 2), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 14), SIMATIC WinCC V7.5 (All versions < V7.5 SP1 Update 3), SINAMICS STARTER (All Versions < V5.4 HF2), SINAMICS Startdrive (All Versions < V16 Update 3), SINEC NMS (All versions < V1.0 SP2), SINEMA Server (All versions < V14 SP3), SINUMERIK ONE virtual (All Versions < V6.14), SINUMERIK Operate (All Versions < V6.14). A common component used by the affected applications regularly calls a helper binary with SYSTEM privileges while the call path is not quoted. This could allow a local attacker to execute arbitrary code with SYTEM privileges.
SQLite 3.32.2 has a use-after-free in resetAccumulator in select.c because the parse tree rewrite for window functions is too late.
ext/fts3/fts3_snippet.c in SQLite before 3.32.0 has a NULL pointer dereference via a crafted matchinfo() query.
SQLite before 3.32.0 allows a virtual table to be renamed to the name of one of its shadow tables, related to alter.c and build.c.
ext/fts3/fts3.c in SQLite before 3.32.0 has a use-after-free in fts3EvalNextRow, related to the snippet feature.
json-c through 0.14 has an integer overflow and out-of-bounds write via a large JSON file, as demonstrated by printbuf_memappend.
libvncclient/cursor.c in LibVNCServer through 0.9.12 has a HandleCursorShape integer overflow and heap-based buffer overflow via a large height or width value. NOTE: this may overlap CVE-2019-15690.
A vulnerability has been identified in Climatix POL908 (BACnet/IP module) (All versions), Climatix POL909 (AWM module) (All versions < V11.32). A persistent cross-site scripting (XSS) vulnerability exists in the web server access log page of the affected devices that could allow an attacker to inject arbitrary JavaScript code via specially crafted GET requests. The code could be potentially executed later by another (privileged) user. The security vulnerability could be exploited by an attacker with network access to the affected system. Successful exploitation requires no system privileges. An attacker could use the vulnerability to compromise the confidentiality and integrity of other users' web sessions.
A vulnerability has been identified in Climatix POL908 (BACnet/IP module) (All versions), Climatix POL909 (AWM module) (All versions < V11.32). A persistent cross-site scripting (XSS) vulnerability exists in the "Server Config" web interface of the affected devices that could allow an attacker to inject arbitrary JavaScript code. The code could be potentially executed later by another (possibly privileged) user. The security vulnerability could be exploited by an attacker with network access to the affected system. Successful exploitation requires no system privileges. An attacker could use the vulnerability to compromise the confidentiality and integrity of other users' web session.
A vulnerability has been identified in SCALANCE X200-4P IRT, SCALANCE X201-3P IRT, SCALANCE X201-3P IRT PRO, SCALANCE X202-2IRT, SCALANCE X202-2P IRT, SCALANCE X202-2P IRT PRO, SCALANCE X204-2, SCALANCE X204-2FM, SCALANCE X204-2LD, SCALANCE X204-2LD TS, SCALANCE X204-2TS, SCALANCE X204IRT, SCALANCE X204IRT PRO, SCALANCE X206-1, SCALANCE X206-1LD, SCALANCE X208, SCALANCE X208PRO, SCALANCE X212-2, SCALANCE X212-2LD, SCALANCE X216, SCALANCE X224, SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XF201-3P IRT, SCALANCE XF202-2P IRT, SCALANCE XF204, SCALANCE XF204-2, SCALANCE XF204-2BA IRT, SCALANCE XF204IRT, SCALANCE XF206-1, SCALANCE XF208, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIMATIC CP 343-1 Advanced, SIMATIC CP 442-1 RNA, SIMATIC CP 443-1, SIMATIC CP 443-1, SIMATIC CP 443-1 Advanced, SIMATIC CP 443-1 RNA, SIMATIC RF180C, SIMATIC RF182C, SIPLUS NET CP 343-1 Advanced, SIPLUS NET CP 443-1, SIPLUS NET CP 443-1 Advanced, SIPLUS NET SCALANCE X308-2. The VxWorks-based Profinet TCP Stack can be forced to make very expensive calls for every incoming packet which can lead to a denial of service.
A vulnerability has been identified in Development/Evaluation Kits for PROFINET IO: EK-ERTEC 200, Development/Evaluation Kits for PROFINET IO: EK-ERTEC 200P, KTK ATE530S, SIDOOR ATD430W, SIDOOR ATE530S COATED, SIDOOR ATE531S, SIMATIC ET 200AL IM 157-1 PN (6ES7157-1AB00-0AB0), SIMATIC ET 200MP IM 155-5 PN HF (6ES7155-5AA00-0AC0), SIMATIC ET 200pro IM 154-8 PN/DP CPU (6ES7154-8AB01-0AB0), SIMATIC ET 200pro IM 154-8F PN/DP CPU (6ES7154-8FB01-0AB0), SIMATIC ET 200pro IM 154-8FX PN/DP CPU (6ES7154-8FX00-0AB0), SIMATIC ET 200S IM 151-8 PN/DP CPU (6ES7151-8AB01-0AB0), SIMATIC ET 200S IM 151-8F PN/DP CPU (6ES7151-8FB01-0AB0), SIMATIC ET 200SP IM 155-6 MF HF (6ES7155-6MU00-0CN0), SIMATIC ET 200SP IM 155-6 PN HA (incl. SIPLUS variants), SIMATIC ET 200SP IM 155-6 PN HF (6ES7155-6AU00-0CN0), SIMATIC ET 200SP IM 155-6 PN/2 HF (6ES7155-6AU01-0CN0), SIMATIC ET 200SP IM 155-6 PN/3 HF (6ES7155-6AU30-0CN0), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants), SIMATIC ET200ecoPN, AI 8xRTD/TC, M12-L (6ES7144-6JF00-0BB0), SIMATIC ET200ecoPN, CM 4x IO-Link, M12-L (6ES7148-6JE00-0BB0), SIMATIC ET200ecoPN, CM 8x IO-Link, M12-L (6ES7148-6JG00-0BB0), SIMATIC ET200ecoPN, CM 8x IO-Link, M12-L (6ES7148-6JJ00-0BB0), SIMATIC ET200ecoPN, DI 16x24VDC, M12-L (6ES7141-6BH00-0BB0), SIMATIC ET200ecoPN, DI 8x24VDC, M12-L (6ES7141-6BG00-0BB0), SIMATIC ET200ecoPN, DIQ 16x24VDC/2A, M12-L (6ES7143-6BH00-0BB0), SIMATIC ET200ecoPN, DQ 8x24VDC/0,5A, M12-L (6ES7142-6BG00-0BB0), SIMATIC ET200ecoPN, DQ 8x24VDC/2A, M12-L (6ES7142-6BR00-0BB0), SIMATIC MICRO-DRIVE PDC, SIMATIC PN/MF Coupler (6ES7158-3MU10-0XA0), SIMATIC PN/PN Coupler (6ES7158-3AD10-0XA0), SIMATIC S7-1200 CPU family (incl. SIPLUS variants), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants), SIMATIC S7-1500 Software Controller, SIMATIC S7-300 CPU 314C-2 PN/DP (6ES7314-6EH04-0AB0), SIMATIC S7-300 CPU 315-2 PN/DP (6ES7315-2EH14-0AB0), SIMATIC S7-300 CPU 315F-2 PN/DP (6ES7315-2FJ14-0AB0), SIMATIC S7-300 CPU 315T-3 PN/DP (6ES7315-7TJ10-0AB0), SIMATIC S7-300 CPU 317-2 PN/DP (6ES7317-2EK14-0AB0), SIMATIC S7-300 CPU 317F-2 PN/DP (6ES7317-2FK14-0AB0), SIMATIC S7-300 CPU 317T-3 PN/DP (6ES7317-7TK10-0AB0), SIMATIC S7-300 CPU 317TF-3 PN/DP (6ES7317-7UL10-0AB0), SIMATIC S7-300 CPU 319-3 PN/DP (6ES7318-3EL01-0AB0), SIMATIC S7-300 CPU 319F-3 PN/DP (6ES7318-3FL01-0AB0), SIMATIC S7-400 H V6 and below CPU family (incl. SIPLUS variants), SIMATIC S7-400 PN/DP V7 CPU family (incl. SIPLUS variants), SIMATIC S7-410 V10 CPU family (incl. SIPLUS variants), SIMATIC S7-410 V8 CPU family (incl. SIPLUS variants), SIMATIC TDC CP51M1, SIMATIC TDC CPU555, SIMATIC WinAC RTX 2010 (6ES7671-0RC08-0YA0), SIMATIC WinAC RTX F 2010 (6ES7671-1RC08-0YA0), SINAMICS S/G Control Unit w. PROFINET, SIPLUS ET 200MP IM 155-5 PN HF (6AG1155-5AA00-2AC0), SIPLUS ET 200MP IM 155-5 PN HF (6AG1155-5AA00-7AC0), SIPLUS ET 200MP IM 155-5 PN HF T1 RAIL (6AG2155-5AA00-1AC0), SIPLUS ET 200S IM 151-8 PN/DP CPU (6AG1151-8AB01-7AB0), SIPLUS ET 200S IM 151-8F PN/DP CPU (6AG1151-8FB01-2AB0), SIPLUS ET 200SP IM 155-6 PN HF (6AG1155-6AU00-2CN0), SIPLUS ET 200SP IM 155-6 PN HF (6AG1155-6AU00-4CN0), SIPLUS ET 200SP IM 155-6 PN HF (6AG1155-6AU01-2CN0), SIPLUS ET 200SP IM 155-6 PN HF (6AG1155-6AU01-7CN0), SIPLUS ET 200SP IM 155-6 PN HF T1 RAIL (6AG2155-6AU00-1CN0), SIPLUS ET 200SP IM 155-6 PN HF T1 RAIL (6AG2155-6AU01-1CN0), SIPLUS ET 200SP IM 155-6 PN HF TX RAIL (6AG2155-6AU01-4CN0), SIPLUS NET PN/PN Coupler (6AG2158-3AD10-4XA0), SIPLUS S7-300 CPU 314C-2 PN/DP (6AG1314-6EH04-7AB0), SIPLUS S7-300 CPU 315-2 PN/DP (6AG1315-2EH14-7AB0), SIPLUS S7-300 CPU 315F-2 PN/DP (6AG1315-2FJ14-2AB0), SIPLUS S7-300 CPU 317-2 PN/DP (6AG1317-2EK14-7AB0), SIPLUS S7-300 CPU 317F-2 PN/DP (6AG1317-2FK14-2AB0). The Interniche-based TCP Stack can be forced to make very expensive calls for every incoming packet which can lead to a denial of service.
A vulnerability has been identified in TIM 3V-IE (incl. SIPLUS NET variants) (All versions < V2.8), TIM 3V-IE Advanced (incl. SIPLUS NET variants) (All versions < V2.8), TIM 3V-IE DNP3 (incl. SIPLUS NET variants) (All versions < V3.3), TIM 4R-IE (incl. SIPLUS NET variants) (All versions < V2.8), TIM 4R-IE DNP3 (incl. SIPLUS NET variants) (All versions < V3.3). The affected versions contain an open debug port that is available under certain specific conditions. The vulnerability is only available if the IP address is configured to 192.168.1.2. If available, the debug port could be exploited by an attacker with network access to the device. No user interaction is required to exploit this vulnerability. The vulnerability impacts confidentiality, integrity, and availability of the affected device. At the stage of publishing this security advisory no public exploitation is known.
In SQLite through 3.31.1, the ALTER TABLE implementation has a use-after-free, as demonstrated by an ORDER BY clause that belongs to a compound SELECT statement.
SQLite through 3.31.1 allows attackers to cause a denial of service (segmentation fault) via a malformed window-function query because the AggInfo object's initialization is mishandled.
A vulnerability has been identified in Spectrum Power™ 5 (All versions < v5.50 HF02). The web server could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. User interaction is required for a successful exploitation. If deployed according to recommended system configuration, Siemens consideres the environmental vector as CR:L/IR:M/AR:H/MAV:A (4.1).
A vulnerability has been identified in SCALANCE S602 (All versions >= V3.0 and < V4.1), SCALANCE S612 (All versions >= V3.0 and < V4.1), SCALANCE S623 (All versions >= V3.0 and < V4.1), SCALANCE S627-2M (All versions >= V3.0 and < V4.1). The integrated configuration web server of the affected devices could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. User interaction is required for a successful exploitation. The user must be logged into the web interface in order for the exploitation to succeed.
A vulnerability has been identified in SiNVR/SiVMS Video Server (All versions < V5.0.0), SiNVR/SiVMS Video Server (All versions >= V5.0.0 < V5.0.2), SiNVR/SiVMS Video Server (All versions >= V5.0.2). The streaming service (default port 5410/tcp) of the SiVMS/SiNVR Video Server applies weak cryptography when exposing device (camera) passwords. This could allow an unauthenticated remote attacker to read and decrypt the passwords and conduct further attacks.
A vulnerability has been identified in SiNVR/SiVMS Video Server (All versions < V5.0.0). The streaming service (default port 5410/tcp) of the SiVMS/SiNVR Video Server contains a path traversal vulnerability, that could allow an unauthenticated remote attacker to access and download arbitrary files from the server.
A vulnerability has been identified in SiNVR/SiVMS Video Server (All versions < V5.0.0). The two FTP services (default ports 21/tcp and 5411/tcp) of the SiVMS/SiNVR Video Server contain a path traversal vulnerability that could allow an authenticated remote attacker to access and download arbitrary files from the server, if the FTP services are enabled.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The Control Center Server (CCS) does not enforce logging of security-relevant activities in its XML-based communication protocol as provided by default on ports 5444/tcp and 5440/tcp. An authenticated remote attacker could exploit this vulnerability to perform covert actions that are not visible in the application log.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The web interface of the Control Center Server (CCS) contains multiple stored Cross-site Scripting (XSS) vulnerabilities in several input fields. This could allow an authenticated remote attacker to inject malicious JavaScript code into the CCS web application that is later executed in the browser context of any other user who views the relevant CCS web content.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The web interface of the Control Center Server (CCS) contains a reflected Cross-site Scripting (XSS) vulnerability that could allow an unauthenticated remote attacker to steal sensitive data or execute administrative actions on behalf of a legitimate administrator of the CCS web interface.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The Control Center Server (CCS) contains an SQL injection vulnerability in its XML-based communication protocol as provided by default on ports 5444/tcp and 5440/tcp. An authenticated remote attacker could exploit this vulnerability to read or modify the CCS database and potentially execute administrative database operations or operating system commands.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0), SiNVR/SiVMS Video Server (All versions < V5.0.0). The FTP services of the SiVMS/SiNVR Video Server and the Control Center Server (CCS) maintain log files that store login credentials in cleartext. In configurations where the FTP service is enabled, authenticated remote attackers could extract login credentials of other users of the service.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The DOWNLOADS section in the web interface of the Control Center Server (CCS) contains a path traversal vulnerability that could allow an authenticated remote attacker to access and download arbitrary files from the server where CCS is installed.
A vulnerability has been identified in OpenPCS 7 V8.1 (All versions), OpenPCS 7 V8.2 (All versions), OpenPCS 7 V9.0 (All versions < V9.0 Upd3), SIMATIC BATCH V8.1 (All versions), SIMATIC BATCH V8.2 (All versions < V8.2 Upd12), SIMATIC BATCH V9.0 (All versions < V9.0 SP1 Upd5), SIMATIC NET PC Software V14 (All versions < V14 SP1 Update 14), SIMATIC NET PC Software V15 (All versions), SIMATIC NET PC Software V16 (All versions < V16 Update 1), SIMATIC PCS 7 V8.1 (All versions), SIMATIC PCS 7 V8.2 (All versions), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP3), SIMATIC Route Control V8.1 (All versions), SIMATIC Route Control V8.2 (All versions), SIMATIC Route Control V9.0 (All versions < V9.0 Upd4), SIMATIC WinCC (TIA Portal) V13 (All versions < V13 SP2), SIMATIC WinCC (TIA Portal) V14 (All versions < V14 SP1 Update 10), SIMATIC WinCC (TIA Portal) V15.1 (All versions < V15.1 Update 5), SIMATIC WinCC (TIA Portal) V16 (All versions < V16 Update 1), SIMATIC WinCC V7.3 (All versions), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Update 14), SIMATIC WinCC V7.5 (All versions < V7.5 SP1 Update 1). Through specially crafted messages, when encrypted communication is enabled, an attacker with network access could use the vulnerability to compromise the availability of the system by causing a Denial-of-Service condition. Successful exploitation requires no system privileges and no user interaction.
A vulnerability has been identified in SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions >= V2.5 and < V20.8), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.5 and < V2.8), SIMATIC S7-1500 Software Controller (All versions >= V2.5 and < V20.8). Affected devices contain a vulnerability that allows an unauthenticated attacker to trigger a Denial-of-Service condition. The vulnerability can be triggered if specially crafted UDP packets are sent to the device. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise the device availability.
A vulnerability has been identified in SIPROTEC 4 and SIPROTEC Compact relays equipped with EN100 Ethernet communication modules (All versions). Specially crafted packets sent to port 50000/UDP of the EN100 Ethernet communication modules could cause a Denial-of-Service of the affected device. A manual reboot is required to recover the service of the device. At the time of advisory publication no public exploitation of this security vulnerability was known to Siemens.
A vulnerability has been identified in SIPORT MP (All versions < 3.1.4). Vulnerable versions of the device allow the creation of special accounts ("service users") with administrative privileges that could enable a remote authenticated attacker to perform actions that are not visible to other users of the system, such as granting persons access to a secured area.
A vulnerability has been identified in SIMATIC S7-300 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V3.X.17), SIMATIC TDC CP51M1 (All versions < V1.1.8), SIMATIC TDC CPU555 (All versions < V1.1.1), SINUMERIK 840D sl (All versions < V4.8.6), SINUMERIK 840D sl (All versions < V4.94). Specially crafted packets sent to port 102/tcp (Profinet) could cause the affected device to go into defect mode. A restart is required in order to recover the system. Successful exploitation requires an attacker to have network access to port 102/tcp, with no authentication. No user interation is required. At the time of advisory publication no public exploitation of this security vulnerability was known.
In SQLite 3.31.1, isAuxiliaryVtabOperator allows attackers to trigger a NULL pointer dereference and segmentation fault because of generated column optimizations.
In ProFTPD 1.3.7, it is possible to corrupt the memory pool by interrupting the data transfer channel. This triggers a use-after-free in alloc_pool in pool.c, and possible remote code execution.
ProFTPD 1.3.7 has an out-of-bounds (OOB) read vulnerability in mod_cap via the cap_text.c cap_to_text function.
Profinet-IO (PNIO) stack versions prior V06.00 do not properly limit internal resource allocation when multiple legitimate diagnostic package requests are sent to the DCE-RPC interface. This could lead to a denial of service condition due to lack of memory for devices that include a vulnerable version of the stack. The security vulnerability could be exploited by an attacker with network access to an affected device. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise the availability of the device.
A vulnerability has been identified in OZW672 (All versions < V10.00), OZW772 (All versions < V10.00). Vulnerable versions of OZW Web Server use predictable path names for project files that legitimately authenticated users have created by using the application's export function. By accessing a specific uniform resource locator on the web server, a remote attacker could be able to download a project file without prior authentication. The security vulnerability could be exploited by an unauthenticated attacker with network access to the affected system. No user interaction is required to exploit this security vulnerability. Successful exploitation of the security vulnerability compromises the confidentiality of the targeted system.
A vulnerability has been identified in SIMATIC ET 200pro IM154-8 PN/DP CPU (All versions < V3.X.17), SIMATIC ET 200pro IM154-8F PN/DP CPU (All versions < V3.X.17), SIMATIC ET 200pro IM154-8FX PN/DP CPU (All versions < V3.X.17), SIMATIC ET 200S IM151-8 PN/DP CPU (All versions < V3.X.17), SIMATIC ET 200S IM151-8F PN/DP CPU (All versions < V3.X.17), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions < V4.1), SIMATIC S7-300 CPU 314C-2 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 315-2 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 315F-2 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 315T-3 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 317-2 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 317F-2 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 317T-3 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 317TF-3 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 319-3 PN/DP (All versions < V3.X.17), SIMATIC S7-300 CPU 319F-3 PN/DP (All versions < V3.X.17), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP V7 CPU family (incl. SIPLUS variants) (All versions), SIMATIC WinAC RTX 2010 (All versions), SIMATIC WinAC RTX F 2010 (All versions), SIPLUS ET 200S IM151-8 PN/DP CPU (All versions < V3.X.17), SIPLUS ET 200S IM151-8F PN/DP CPU (All versions < V3.X.17), SIPLUS S7-300 CPU 314C-2 PN/DP (All versions < V3.X.17), SIPLUS S7-300 CPU 315-2 PN/DP (All versions < V3.X.17), SIPLUS S7-300 CPU 315F-2 PN/DP (All versions < V3.X.17), SIPLUS S7-300 CPU 317-2 PN/DP (All versions < V3.X.17), SIPLUS S7-300 CPU 317F-2 PN/DP (All versions < V3.X.17). Affected devices contain a vulnerability that could cause a denial of service condition of the web server by sending specially crafted HTTP requests to ports 80/tcp and 443/tcp. Beyond the web service, no other functions or interfaces are affected by the denial of service condition.
A vulnerability has been identified in SCALANCE S602 (All versions >= V3.0 and < V4.1), SCALANCE S612 (All versions >= V3.0 and < V4.1), SCALANCE S623 (All versions >= V3.0 and < V4.1), SCALANCE S627-2M (All versions >= V3.0 and < V4.1). Specially crafted packets sent to port 443/tcp of affected devices could cause a Denial-of-Service condition of the web server. A cold reboot is required to restore the functionality of the device.
A vulnerability has been identified in SCALANCE S602 (All versions >= V3.0 and < V4.1), SCALANCE S612 (All versions >= V3.0 and < V4.1), SCALANCE S623 (All versions >= V3.0 and < V4.1), SCALANCE S627-2M (All versions >= V3.0 and < V4.1). Specially crafted packets sent to port 443/tcp of affected devices could cause a Denial-of-Service condition of the web server.
A vulnerability has been identified in SCALANCE S602 (All versions < V4.1), SCALANCE S612 (All versions < V4.1), SCALANCE S623 (All versions < V4.1), SCALANCE S627-2M (All versions < V4.1), SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < 5.2.4), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0), SCALANCE X-200RNA switch family (All versions < V3.2.7), SCALANCE X-300 switch family (incl. X408 and SIPLUS NET variants) (All versions < 4.1.3). The device does not send the X-Frame-Option Header in the administrative web interface, which makes it vulnerable to Clickjacking attacks. The security vulnerability could be exploited by an attacker that is able to trick an administrative user with a valid session on the target device into clicking on a website controlled by the attacker. The vulnerability could allow an attacker to perform administrative actions via the web interface.
Multiple vulnerabilities exists in Aruba Instate before 4.1.3.0 and 4.2.3.1 due to insufficient validation of user-supplied input and insufficient checking of parameters, which could allow a malicious user to bypass security restrictions, obtain sensitive information, perform unauthorized actions and execute arbitrary code.
xmlStringLenDecodeEntities in parser.c in libxml2 2.9.10 has an infinite loop in a certain end-of-file situation.
A vulnerability has been identified in SINAMICS PERFECT HARMONY GH180 Drives MLFB 6SR32..-.....-.... MLFB 6SR4...-.....-.... MLFB 6SR5...-.....-.... With option A30 (HMIs 12 inches or larger) (All versions), SINAMICS PERFECT HARMONY GH180 Drives MLFB 6SR325.-.....-.... (High Availability) (All versions). The affected device contains a vulnerability that could allow an unauthenticated attacker to restore the affected device to a point where predefined application and operating system protection mechanisms are not in place. Successful exploitation requires physical access to the system, but no system privileges and no user interaction. An attacker could use the vulnerability to compromise confidentialiy, integrity and availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in Capital Embedded AR Classic 431-422 (All versions), Capital Embedded AR Classic R20-11 (All versions < V2303), Nucleus NET (All versions), Nucleus ReadyStart V3 (All versions < V2017.02.3), Nucleus Source Code (All versions). By sending specially crafted DHCP packets to a device where the DHCP client is enabled, an attacker could change the IP address of the device to an invalid value.
A vulnerability has been identified in SCALANCE X204RNA (HSR), SCALANCE X204RNA (PRP), SCALANCE X204RNA EEC (HSR), SCALANCE X204RNA EEC (PRP), SCALANCE X204RNA EEC (PRP/HSR), SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices contain a vulnerability that allows an unauthenticated attacker to violate access-control rules. The vulnerability can be triggered by sending GET request to specific uniform resource locator on the web configuration interface of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems. An attacker could use the vulnerability to obtain sensitive information or change the device configuration. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINEMA Server (All versions < V14.0 SP2 Update 1). Incorrect session validation could allow an attacker with a valid session, with low privileges, to perform firmware updates and other administrative operations on connected devices. The security vulnerability could be exploited by an attacker with network access to the affected system. An attacker must have access to a low privileged account in order to exploit the vulnerability. An attacker could use the vulnerability to compromise confidentiality, integrity, and availability of the affected system and underlying components. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in TIA Portal V14 (All versions), TIA Portal V15 (All versions < V15.1 Update 7), TIA Portal V16 (All versions < V16 Update 6), TIA Portal V17 (All versions < V17 Update 4). Changing the contents of a configuration file could allow an attacker to execute arbitrary code with SYSTEM privileges. The security vulnerability could be exploited by an attacker with a valid account and limited access rights on the system. No user interaction is required. At the time of advisory publication no public exploitation of this security vulnerability was known.
zipfileUpdate in ext/misc/zipfile.c in SQLite 3.30.1 mishandles a NULL pathname during an update of a ZIP archive.
xmlParseBalancedChunkMemoryRecover in parser.c in libxml2 before 2.9.10 has a memory leak related to newDoc->oldNs.
SQLite 3.30.1 mishandles certain parser-tree rewriting, related to expr.c, vdbeaux.c, and window.c. This is caused by incorrect sqlite3WindowRewrite() error handling.
flattenSubquery in select.c in SQLite 3.30.1 mishandles certain uses of SELECT DISTINCT involving a LEFT JOIN in which the right-hand side is a view. This can cause a NULL pointer dereference (or incorrect results).
multiSelect in select.c in SQLite 3.30.1 mishandles certain errors during parsing, as demonstrated by errors from sqlite3WindowRewrite() calls. NOTE: this vulnerability exists because of an incomplete fix for CVE-2019-19880.
exprListAppendList in window.c in SQLite 3.30.1 allows attackers to trigger an invalid pointer dereference because constant integer values in ORDER BY clauses of window definitions are mishandled.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The SFTP service (default port 22/tcp) of the Control Center Server (CCS) does not properly limit its capabilities to the specified purpose. In conjunction with CVE-2019-18341, an unauthenticated remote attacker with network access to the CCS server could exploit this vulnerability to read or delete arbitrary files, or access other resources on the same server.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The SFTP service (default port 22/tcp) of the Control Center Server (CCS) contains an authentication bypass vulnerability. A remote attacker with network access to the CCS server could exploit this vulnerability to read data from the EDIR directory (for example, the list of all configured stations).
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0), Control Center Server (CCS) (All versions >= V1.5.0), SiNVR/SiVMS Video Server (All versions < V5.0.0), SiNVR/SiVMS Video Server (All versions >= V5.0.0). Both the SiVMS/SiNVR Video Server and the Control Center Server (CCS) store user and device passwords by applying weak cryptography. A local attacker could exploit this vulnerability to extract the passwords from the user database and/or the device configuration files to conduct further attacks.
A vulnerability has been identified in SiNVR/SiVMS Video Server (All versions < V5.0.0). The HTTP service (default port 5401/tcp) of the SiVMS/SiNVR Video Server contains an authentication bypass vulnerability, even when properly configured with enforced authentication. A remote attacker with network access to the Video Server could exploit this vulnerability to read the SiVMS/SiNVR users database, including the passwords of all users in obfuscated cleartext.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The Control Center Server (CCS) contains a directory traversal vulnerability in its XML-based communication protocol as provided by default on ports 5444/tcp and 5440/tcp. An authenticated remote attacker with network access to the CCS server could exploit this vulnerability to list arbitrary directories or read files outside of the CCS application context.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The Control Center Server (CCS) contains an authentication bypass vulnerability in its XML-based communication protocol as provided by default on ports 5444/tcp and 5440/tcp. A remote attacker with network access to the CCS server could exploit this vulnerability to read the CCS users database, including the passwords of all users in obfuscated cleartext.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could be able to gain access to logs and configuration files by sending specifically crafted packets to 80/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could be able to enumerate valid user names by sending specifically crafted packets to 8090/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could gain access to filenames on the server by sending specifically crafted packets to 8090/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could gain access to directory listings of the server by sending specifically crafted packets to 80/tcp, 8095/tcp or 8080/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could gain access to path and filenames on the server by sending specifically crafted packets to 1099/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18324, CVE-2019-18325, CVE-2019-18326, CVE-2019-18327, CVE-2019-18328, and CVE-2019-18329. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18324, CVE-2019-18325, CVE-2019-18326, CVE-2019-18327, CVE-2019-18328, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18324, CVE-2019-18325, CVE-2019-18326, CVE-2019-18327, CVE-2019-18329, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18324, CVE-2019-18325, CVE-2019-18326, CVE-2019-18328, CVE-2019-18329, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18324, CVE-2019-18325, CVE-2019-18327, CVE-2019-18328, CVE-2019-18329, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18324, CVE-2019-18326, CVE-2019-18327, CVE-2019-18328, CVE-2019-18329, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18323, CVE-2019-18325, CVE-2019-18326, CVE-2019-18327, CVE-2019-18328, CVE-2019-18329, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could cause a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to 5010/tcp. This vulnerability is independent from CVE-2019-18324, CVE-2019-18325, CVE-2019-18326, CVE-2019-18327, CVE-2019-18328, CVE-2019-18329, and CVE-2019-18330. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could be able to read and write arbitrary files on the local file system by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18321. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could be able to read and write arbitrary files on the local file system by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18322. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could be able to upload arbitrary files without authentication. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could cause a Denial-of-Service condition by sending specifically crafted objects via RMI. This vulnerability is independent from CVE-2019-18317 and CVE-2019-18318. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server can cause a Denial-of-Service condition by sending specifically crafted objects via RMI. This vulnerability is independent from CVE-2019-18317 and CVE-2019-18319. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could cause a Denial-of-Service condition by sending specifically crafted objects via RMI. This vulnerability is independent from CVE-2019-18318 and CVE-2019-18319. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could gain remote code execution by sending specifically crafted packets to 1099/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could gain remote code execution by sending specifically crafted packets to 8888/tcp. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with network access to the Application Server could gain remote code execution by sending specifically crafted objects via RMI. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could gain remote code execution by sending specifically crafted objects to one of the RPC services. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could be able to enumerate running RPC services. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 7061/tcp. This vulnerability is independent from CVE-2019-18310. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 7061/tcp. This vulnerability is independent from CVE-2019-18311. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with local access to the MS3000 Server and a low privileged user account could gain root privileges by manipulating specific files in the local file system. This vulnerability is independent from CVE-2019-18308. Please note that an attacker needs to have local access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with local access to the MS3000 Server and a low privileged user account could gain root privileges by manipulating specific files in the local file system. This vulnerability is independent from CVE-2019-18309. Please note that an attacker needs to have local access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, and CVE-2019-18306. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server can trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with local access to the MS3000 Server and low privileges could gain root privileges by sending specifically crafted packets to a named pipe. Please note that an attacker needs to have local access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18289, CVE-2019-18293, and CVE-2019-18295. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18289, CVE-2019-18293, and CVE-2019-18296. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18292, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18289, CVE-2019-18295, and CVE-2019-18296. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18291, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18290, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18291, CVE-2019-18292, CVE-2019-18294, CVE-2019-18298, CVE-2019-18299, CVE-2019-18300, CVE-2019-18301, CVE-2019-18302, CVE-2019-18303, CVE-2019-18304, CVE-2019-18305, CVE-2019-18306, and CVE-2019-18307. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 MS3000 Migration Server (All versions). An attacker with network access to the MS3000 Server could trigger a Denial-of-Service condition and potentially gain remote code execution by sending specifically crafted packets to port 5010/tcp. This vulnerability is independent from CVE-2019-18293, CVE-2019-18295, and CVE-2019-18296. Please note that an attacker needs to have network access to the MS3000 in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). An attacker with valid authentication at the RMI interface could be able to gain remote code execution through an unsecured file upload. Please note that an attacker needs to have access to the Application Highway in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). The Application Server exposes directory listings and files containing sensitive information. This vulnerability is independent from CVE-2019-18286. Please note that an attacker needs to have access to the Application Highway in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). The Application Server exposes directory listings and files containing sensitive information. This vulnerability is independent from CVE-2019-18287. Please note that an attacker needs to have access to the Application Highway in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). The RMI communication between the client and the Application Server is unencrypted. An attacker with access to the communication channel can read credentials of a valid user. Please note that an attacker needs to have access to the Application Highway in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). The AdminService is available without authentication on the Application Server. An attacker can use methods exposed via this interface to receive password hashes of other users and to change user passwords. Please note that an attacker needs to have access to the Application Highway in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). The AdminService is available without authentication on the Application Server. An attacker can gain remote code execution by sending specifically crafted objects to one of its functions. Please note that an attacker needs to have access to the Application Highway in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The user configuration menu in the web interface of the Control Center Server (CCS) transfers user passwords in clear to the client (browser). An attacker with administrative privileges for the web interface could be able to read (and not only reset) passwords of other CCS users.
A vulnerability has been identified in EN100 Ethernet module DNP3 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.37), EN100 Ethernet module IEC104 variant (All versions), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). A vulnerability in the integrated web server of the affected devices could allow unauthorized attackers to obtain sensitive information about the device, including logs and configurations. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in EN100 Ethernet module DNP3 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.37), EN100 Ethernet module IEC104 variant (All versions), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). The web interface could allow Cross-Site Scripting (XSS) attacks if an attacker is able to modify content of particular web pages, causing the application to behave in unexpected ways for legitimate users. Successful exploitation does not require for an attacker to be authenticated to the web interface. This could allow the attacker to read or modify contents of the web application. At the time of advisory publication no public exploitation of this security. vulnerability was known.
A vulnerability has been identified in EN100 Ethernet module DNP3 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.37), EN100 Ethernet module IEC104 variant (All versions), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). An unauthorized user could exploit a buffer overflow vulnerability in the webserver. Specially crafted packets sent could cause a Denial-of-Service condition and if certain conditions are met, the affected devices must be restarted manually to fully recover. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in XHQ (All versions < V6.0.0.2). The web application requests could be manipulated, causing the the application to behave in unexpected ways for legitimate users. Successful exploitation does not require for an attacker to be authenticated. A successful attack could allow the import of scripts or generation of malicious links. This could allow the attacker to read or modify contents of the web application. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in XHQ (All versions < V6.0.0.2). The web interface could allow for an an attacker to craft the input in a form that is not expected, causing the application to behave in unexpected ways for legitimate users. Successful exploitation requires for an attacker to be authenticated to the web interface. A successful attack could cause the application to have unexpected behavior. This could allow the attacker to modify contents of the web application. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in XHQ (All versions < V6.0.0.2). The web interface could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link. Successful exploitation requires user interaction by a legitimate user, who must be authenticated to the web interface. A successful attack could allow an attacker to trigger actions via the web interface that the legitimate user is allowed to perform. This could allow the attacker to read or modify contents of the web application. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-1200 CPU family < V4.x (incl. SIPLUS variants) (All versions), SIMATIC S7-1200 CPU family V4.x (incl. SIPLUS variants) (All versions with Function State (FS) < 11), SIMATIC S7-200 SMART CPU CR20s (6ES7 288-1CR20-0AA1) (All versions <= V2.3.0 and Function State (FS) <= 3), SIMATIC S7-200 SMART CPU CR30s (6ES7 288-1CR30-0AA1) (All versions <= V2.3.0 and Function State (FS) <= 3), SIMATIC S7-200 SMART CPU CR40 (6ES7 288-1CR40-0AA0) (All versions <= V2.2.2 and Function State (FS) <= 8), SIMATIC S7-200 SMART CPU CR40s (6ES7 288-1CR40-0AA1) (All versions <= V2.3.0 and Function State (FS) <= 3), SIMATIC S7-200 SMART CPU CR60 (6ES7 288-1CR60-0AA0) (All versions <= V2.2.2 and Function State (FS) <= 10), SIMATIC S7-200 SMART CPU CR60s (6ES7 288-1CR60-0AA1) (All versions <= V2.3.0 and Function State (FS) <= 3), SIMATIC S7-200 SMART CPU SR20 (6ES7 288-1SR20-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 11), SIMATIC S7-200 SMART CPU SR30 (6ES7 288-1SR30-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 10), SIMATIC S7-200 SMART CPU SR40 (6ES7 288-1SR40-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 10), SIMATIC S7-200 SMART CPU SR60 (6ES7 288-1SR60-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 12), SIMATIC S7-200 SMART CPU ST20 (6ES7 288-1ST20-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 9), SIMATIC S7-200 SMART CPU ST30 (6ES7 288-1ST30-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 9), SIMATIC S7-200 SMART CPU ST40 (6ES7 288-1ST40-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 8), SIMATIC S7-200 SMART CPU ST60 (6ES7 288-1ST60-0AA0) (All versions <= V2.5.0 and Function State (FS) <= 8), SIMATIC S7-200 SMART CPU family (All versions). There is an access mode used during manufacturing of the affected devices that allows additional diagnostic functionality. The security vulnerability could be exploited by an attacker with physical access to the UART interface during boot process.
A vulnerability has been identified in Desigo PX automation controllers PXC00-E.D, PXC50-E.D, PXC100-E.D, PXC200-E.D with Desigo PX Web modules PXA40-W0, PXA40-W1, PXA40-W2 (All firmware versions < V6.00.320), Desigo PX automation controllers PXC00-U, PXC64-U, PXC128-U with Desigo PX Web modules PXA30-W0, PXA30-W1, PXA30-W2 (All firmware versions < V6.00.320), Desigo PX automation controllers PXC22.1-E.D, PXC36-E.D, PXC36.1-E.D with activated web server (All firmware versions < V6.00.320). The device contains a vulnerability that could allow an attacker to cause a denial of service condition on the device's web server by sending a specially crafted HTTP message to the web server port (tcp/80). The security vulnerability could be exploited by an attacker with network access to an affected device. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise the availability of the device's web service. While the device itself stays operational, the web server responds with HTTP status code 404 (Not found) to any further request. A reboot is required to recover the web interface. At the time of advisory publication no public exploitation of this security vulnerability was known.
pragma.c in SQLite through 3.30.1 mishandles NOT NULL in an integrity_check PRAGMA command in certain cases of generated columns.
SQLite 3.30.1 mishandles certain SELECT statements with a nonexistent VIEW, leading to an application crash.
alter.c in SQLite through 3.30.1 allows attackers to trigger infinite recursion via certain types of self-referential views in conjunction with ALTER TABLE statements.
lookupName in resolve.c in SQLite 3.30.1 omits bits from the colUsed bitmask in the case of a generated column, which allows attackers to cause a denial of service or possibly have unspecified other impact.
SQLite 3.30.1 mishandles pExpr->y.pTab, as demonstrated by the TK_COLUMN case in sqlite3ExprCodeTarget in expr.c.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in webclient of Siemens AG Polarion could allow an attacker to exploit a persistent XSS vulnerability. This issue affects: Siemens AG Polarion All versions < 19.2.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in webclient of Siemens AG Polarion could allow an attacker to exploit a reflected XSS vulnerability. This issue affects: Siemens AG Polarion All versions < 19.2.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in webclient of Siemens AG Polarion could allow an attacker to exploit a reflected XSS vulnerability. This issue affects: Siemens AG Polarion All versions < 19.2.
sqlite3Select in select.c in SQLite 3.30.1 allows a crash if a sub-select uses both DISTINCT and window functions, and also has certain ORDER BY usage.
Aruba Instant 4.x prior to 6.4.4.8-4.2.4.12, 6.5.x prior to 6.5.4.11, 8.3.x prior to 8.3.0.6, and 8.4.x prior to 8.4.0.1 allows Command injection.
LibVNC commit before d01e1bb4246323ba6fcee3b82ef1faa9b1dac82a contains a memory leak (CWE-655) in VNC server code, which allow an attacker to read stack memory and can be abused for information disclosure. Combined with another vulnerability, it can be used to leak stack memory and bypass ASLR. This attack appear to be exploitable via network connectivity. These vulnerabilities have been fixed in commit d01e1bb4246323ba6fcee3b82ef1faa9b1dac82a.
A vulnerability has been identified in SIMATIC IT UADM (All versions < V1.3). An authenticated remote attacker with network access to port 1434/tcp of SIMATIC IT UADM could potentially recover a password that can be used to gain read and write access to the related TeamCenter station. The security vulnerability could be exploited only if the attacker is authenticated. No user interaction is required to exploit this security vulnerability. Successful exploitation of the security vulnerability compromises the confidentiality of the targeted system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC WinAC RTX (F) 2010 (All versions < SP3 Update 1). Affected versions of the software contain a vulnerability that could allow an unauthenticated attacker to trigger a denial-of-service condition. The vulnerability can be triggered if a large HTTP request is sent to the executing service. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the service provided by the software.
Affected devices improperly handle large amounts of specially crafted UDP packets. This could allow an unauthenticated remote attacker to trigger a denial of service condition.
An attacker with network access to an affected product may cause a denial of service condition by breaking the real-time synchronization (IRT) of the affected installation.
OpenSSH 7.7 through 7.9 and 8.x before 8.1, when compiled with an experimental key type, has a pre-authentication integer overflow if a client or server is configured to use a crafted XMSS key. This leads to memory corruption and local code execution because of an error in the XMSS key parsing algorithm. NOTE: the XMSS implementation is considered experimental in all released OpenSSH versions, and there is no supported way to enable it when building portable OpenSSH.
A vulnerability has been identified in IE/WSN-PA Link WirelessHART Gateway (All versions). The integrated configuration web server of the affected device could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. User interaction is required for a successful exploitation. The user must be logged into the web interface in order for the exploitation to succeed. At the stage of publishing this security advisory no public exploitation is known.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V2.0 SP1). An attacker with administrative privileges can obtain the hash of a connected device's password. The security vulnerability could be exploited by an attacker with network access to the SINEMA Remote Connect Server and administrative privileges. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V2.0 SP1). Some parts of the web application are not protected against Cross Site Request Forgery (CSRF) attacks. The security vulnerability could be exploited by an attacker that is able to trigger requests of a logged-in user to the application. The vulnerability could allow switching the connectivity state of a user or a device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V2.0 SP1). Some pages that should only be accessible by a privileged user can also be accessed by a non-privileged user. The security vulnerability could be exploited by an attacker with network access and valid credentials for the web interface. No user interaction is required. The vulnerability could allow an attacker to access information that he should not be able to read. The affected information does not include passwords. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V2.0 SP1). The web interface has no means to prevent password guessing attacks. The vulnerability could be exploited by an attacker with network access to the vulnerable software, requiring no privileges and no user interaction. The vulnerability could allow full access to the web interface. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC TDC CP51M1 (All versions < V1.1.7). An attacker with network access to the device could cause a Denial-of-Service condition by sending a specially crafted UDP packet. The vulnerability affects the UDP communication of the device. The security vulnerability could be exploited without authentication. No user interaction is required to exploit this security vulnerability. Successful exploitation of the security vulnerability compromises availability of the targeted system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC Drive Controller family (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants) (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V20.8), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions >= V20.8), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions < V4.4.0), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions >= V4.4.0), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V2.8.1), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.8.1), SIMATIC S7-1500 Software Controller (All versions < V20.8), SIMATIC S7-1500 Software Controller (All versions >= V20.8), SIMATIC S7-PLCSIM Advanced (All versions < V3.0), SIMATIC S7-PLCSIM Advanced (All versions >= V3.0). An attacker with network access to port 102/tcp could potentially modify the user program on the PLC in a way that the running code is different from the source code which is stored on the device. An attacker must have network access to affected devices and must be able to perform changes to the user program. The vulnerability could impact the perceived integrity of the user program stored on the CPU. An engineer that tries to obtain the code of the user program running on the device, can receive different source code that is not actually running on the device.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.5), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0), SCALANCE X204RNA (HSR) (All versions), SCALANCE X204RNA (PRP) (All versions), SCALANCE X204RNA EEC (HSR) (All versions), SCALANCE X204RNA EEC (PRP) (All versions), SCALANCE X204RNA EEC (PRP/HSR) (All versions). The device contains a vulnerability that could allow an attacker to trigger a denial-of-service condition by sending large message packages repeatedly to the telnet service. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device.
A vulnerability has been identified in SIMATIC CP 1626 (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC (incl. SIPLUS variants) (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V20.8), SIMATIC HMI Panel (incl. SIPLUS variants) (All versions), SIMATIC NET PC Software V14 (All versions < V14 SP1 Update 14), SIMATIC NET PC Software V15 (All versions), SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions < V4.4.0), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V2.8.1), SIMATIC S7-1500 Software Controller (All versions < V20.8), SIMATIC S7-PLCSIM Advanced (All versions < V3.0), SIMATIC STEP 7 (TIA Portal) (All versions < V16), SIMATIC WinCC (TIA Portal) (All versions < V16), SIMATIC WinCC OA (All versions < V3.16 P013), SIMATIC WinCC Runtime Advanced (All versions < V16), SIMATIC WinCC Runtime Professional (All versions < V16), TIM 1531 IRC (incl. SIPLUS NET variants) (All versions < V2.1). Affected devices contain a message protection bypass vulnerability due to certain properties in the calculation used for integrity protection. This could allow an attacker in a Man-in-the-Middle position to modify network traffic sent on port 102/tcp to the affected devices.
A vulnerability has been identified in SCALANCE SC-600 (V2.0). An authenticated attacker with access to port 22/tcp as well as physical access to an affected device may trigger the device to allow execution of arbitrary commands. The security vulnerability could be exploited by an authenticated attacker with physical access to the affected device. No user interaction is required to exploit this vulnerability. The vulnerability impacts the confidentiality, integrity and availability of the affected device.
A vulnerability has been identified in SCALANCE SC-600 (V2.0), SCALANCE XB-200 (V4.1), SCALANCE XC-200 (V4.1), SCALANCE XF-200BA (V4.1), SCALANCE XP-200 (V4.1), SCALANCE XR-300WG (V4.1). An authenticated attacker with network access to to port 22/tcp of an affected device may cause a Denial-of-Service condition. The security vulnerability could be exploited by an authenticated attacker with network access to the affected device. No user interaction is required to exploit this vulnerability. The vulnerability impacts the availability of the affected device.
Wind River VxWorks 6.7 though 6.9 and vx7 has a Buffer Overflow in the TCP component (issue 3 of 4). This is an IPNET security vulnerability: TCP Urgent Pointer state confusion during connect() to a remote host.
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the TCP component (issue 2 of 4). This is an IPNET security vulnerability: TCP Urgent Pointer state confusion caused by a malformed TCP AO option.
Wind River VxWorks 6.6 through vx7 has Session Fixation in the TCP component. This is a IPNET security vulnerability: DoS of TCP connection via malformed TCP options.
Wind River VxWorks has a Buffer Overflow in the TCP component (issue 1 of 4). This is a IPNET security vulnerability: TCP Urgent Pointer = 0 that leads to an integer underflow.
Wind River VxWorks 6.5, 6.6, 6.7, 6.8, 6.9.3 and 6.9.4 has a Memory Leak in the IGMPv3 client component. There is an IPNET security vulnerability: IGMP Information leak via IGMPv3 specific membership report.
Wind River VxWorks 6.9.4 and vx7 has a Buffer Overflow in the TCP component (issue 4 of 4). There is an IPNET security vulnerability: TCP Urgent Pointer state confusion due to race condition.
Wind River VxWorks 6.6, 6.7, 6.8, 6.9 and vx7 has an array index error in the IGMPv3 client component. There is an IPNET security vulnerability: DoS via NULL dereference in IGMP parsing.
Wind River VxWorks 6.6 through 6.9 has a Buffer Overflow in the DHCP client component. There is an IPNET security vulnerability: Heap overflow in DHCP Offer/ACK parsing inside ipdhcpc.
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the IPv4 component. There is an IPNET security vulnerability: Stack overflow in the parsing of IPv4 packets’ IP options.
A vulnerability has been identified in SIPROTEC 5 devices with CPU variants CP200 (All versions < V7.59), SIPROTEC 5 devices with CPU variants CP300 and CP100 (All versions < V8.01), Siemens Power Meters Series 9410 (All versions < V2.2.1), Siemens Power Meters Series 9810 (All versions). An unauthenticated attacker with network access to the device could potentially insert arbitrary code which is executed before firmware verification in the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
An arbitrary file copy vulnerability in mod_copy in ProFTPD up to 1.3.5b allows for remote code execution and information disclosure without authentication, a related issue to CVE-2015-3306.
A vulnerability has been identified in SIMATIC PCS 7 V8.0 and earlier (All versions), SIMATIC PCS 7 V8.1 (All versions < V8.1 with WinCC V7.3 Upd 19), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1 with WinCC V7.4 SP1 Upd 11), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP2 with WinCC V7.4 SP1 Upd11), SIMATIC WinCC Professional (TIA Portal V13) (All versions), SIMATIC WinCC Professional (TIA Portal V14) (All versions < V14 SP1 Upd 9), SIMATIC WinCC Professional (TIA Portal V15) (All versions < V15.1 Upd 3), SIMATIC WinCC Runtime Professional V13 (All versions), SIMATIC WinCC Runtime Professional V14 (All versions < V14.1 Upd 8), SIMATIC WinCC Runtime Professional V15 (All versions < V15.1 Upd 3), SIMATIC WinCC V7.2 and earlier (All versions), SIMATIC WinCC V7.3 (All versions < V7.3 Upd 19), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Upd 11), SIMATIC WinCC V7.5 (All versions < V7.5 Upd 3). The SIMATIC WinCC DataMonitor web application of the affected products allows to upload arbitrary ASPX code. The security vulnerability could be exploited by an authenticated attacker with network access to the WinCC DataMonitor application. No user interaction is required to exploit this vulnerability. The vulnerability impacts confidentiality, integrity, and availability of the affected device. At the stage of publishing this security advisory no public exploitation is known.
A vulnerability has been identified in Spectrum Power 3 (Corporate User Interface) (All versions <= v3.11), Spectrum Power 4 (Corporate User Interface) (Version v4.75), Spectrum Power 5 (Corporate User Interface) (All versions < v5.50), Spectrum Power 7 (Corporate User Interface) (All versions <= v2.20). The web server could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. User interaction is required for a successful exploitation. The user does not need to be logged into the web interface in order for the exploitation to succeed.At the stage of publishing this security advisory no public exploitation is known.
A vulnerability has been identified in All other SIPROTEC 5 device types with CPU variants CP300 and CP100 and the respective Ethernet communication modules (All versions ), DIGSI 5 engineering software (All versions < V7.90), SIPROTEC 5 device types 6MD85, 6MD86, 6MD89, 7UM85, 7SA87, 7SD87, 7SL87, 7VK87, 7SA82, 7SA86, 7SD82, 7SD86, 7SL82, 7SL86, 7SJ86, 7SK82, 7SK85, 7SJ82, 7SJ85, 7UT82, 7UT85, 7UT86, 7UT87 and 7VE85 with CPU variants CP300 and CP100 and the respective Ethernet communication modules (All versions < V7.90), SIPROTEC 5 device types 7SS85 and 7KE85 (All versions < V8.01), SIPROTEC 5 device types with CPU variants CP200 and the respective Ethernet communication modules (All versions < V7.59), SIPROTEC 5 relays with CPU variants CP200 and the respective Ethernet communication modules (All versions < V7.59). Specially crafted packets sent to port 443/TCP could cause a Denial of Service condition.
A vulnerability has been identified in All other SIPROTEC 5 device types with CPU variants CP300 and CP100 and the respective Ethernet communication modules (All versions ), DIGSI 5 engineering software (All versions < V7.90), SIPROTEC 5 device types 6MD85, 6MD86, 6MD89, 7UM85, 7SA87, 7SD87, 7SL87, 7VK87, 7SA82, 7SA86, 7SD82, 7SD86, 7SL82, 7SL86, 7SJ86, 7SK82, 7SK85, 7SJ82, 7SJ85, 7UT82, 7UT85, 7UT86, 7UT87 and 7VE85 with CPU variants CP300 and CP100 and the respective Ethernet communication modules (All versions < V7.90), SIPROTEC 5 device types 7SS85 and 7KE85 (All versions < V8.01), SIPROTEC 5 device types with CPU variants CP200 and the respective Ethernet communication modules (All versions). A remote attacker could use specially crafted packets sent to port 443/TCP to upload, download or delete files in certain parts of the file system.
A vulnerability has been identified in TIA Administrator (All versions < V1.0 SP1 Upd1). The integrated configuration web application (TIA Administrator) allows to execute certain application commands without proper authentication. The vulnerability could be exploited by an attacker with local access to the affected system. Successful exploitation requires no privileges and no user interaction. An attacker could use the vulnerability to compromise confidentiality and integrity and availability of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIEMENS LOGO!8 (6ED1052-xyyxx-0BA8 FS:01 to FS:06 / Firmware version V1.80.xx and V1.81.xx), SIEMENS LOGO!8 (6ED1052-xyy08-0BA0 FS:01 / Firmware version < V1.82.02). The integrated webserver does not invalidate the Session ID upon user logout. An attacker that successfully extracted a valid Session ID is able to use it even after the user logs out. The security vulnerability could be exploited by an attacker in a privileged network position who is able to read the communication between the affected device and the user or by an attacker who is able to obtain valid Session IDs through other means. The user must invoke a session to the affected device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIEMENS LOGO!8 (6ED1052-xyyxx-0BA8 FS:01 to FS:06 / Firmware version V1.80.xx and V1.81.xx), SIEMENS LOGO!8 (6ED1052-xyy08-0BA0 FS:01 / Firmware version < V1.82.02). An attacker with network access to port 10005/tcp of the LOGO! device could cause a Denial-of-Service condition by sending specially crafted packets. The security vulnerability could be exploited by an unauthenticated attacker with network access to the affected service. No user interaction is required to exploit this security vulnerability. Successful exploitation of the security vulnerability compromises availability of the targeted system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All Versions < V5.2.4), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0), SCALANCE X-300 switch family (incl. X408 and SIPLUS NET variants) (All versions < V4.1.3), SCALANCE X-414-3E (All versions). The affected devices store passwords in a recoverable format. An attacker may extract and recover device passwords from the device configuration. Successful exploitation requires access to a device configuration backup and impacts confidentiality of the stored passwords.
A vulnerability has been identified in SIMATIC MV400 family (All Versions < V7.0.6). Communication with the device is not encrypted. Data transmitted between the device and the user can be obtained by an attacker in a privileged network position. The security vulnerability can be exploited by an attacker in a privileged network position which allows eavesdropping the communication between the affected device and the user. The user must invoke a session. Successful exploitation of the vulnerability compromises confidentiality of the data transmitted.
A vulnerability has been identified in SIMATIC MV400 family (All Versions < V7.0.6). An authenticated attacker could escalate privileges by sending specially crafted requests to the integrated webserver. The security vulnerability can be exploited by an attacker with network access to the device. Valid user credentials, but no user interaction are required. Successful exploitation compromises integrity and availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A remote code execution vulnerability exists in Remote Desktop Services formerly known as Terminal Services when an unauthenticated attacker connects to the target system using RDP and sends specially crafted requests, aka 'Remote Desktop Services Remote Code Execution Vulnerability'.
A vulnerability has been identified in SINAMICS PERFECT HARMONY GH180 with NXG I control, MLFBs: 6SR2...-, 6SR3...-, 6SR4...- (All Versions with option G28), SINAMICS PERFECT HARMONY GH180 with NXG II control, MLFBs: 6SR2...-, 6SR3...-, 6SR4...- (All Versions with option G28). A denial of service vulnerability exists in the affected products. The vulnerability could be exploited by an attacker with network access to the device. Successful exploitation requires no privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V15.1 Update 1), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V15.1 Update 1), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 und KTP900F (All versions < V15.1 Update 1), SIMATIC WinCC Runtime Advanced (All versions < V15.1 Update 1), SIMATIC WinCC Runtime Professional (All versions < V15.1 Update 1), SIMATIC WinCC (TIA Portal) (All versions < V15.1 Update 1), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). The integrated web server could allow Cross-Site Scripting (XSS) attacks if an attacker is able to modify particular parts of the device configuration via SNMP. The security vulnerability could be exploited by an attacker with network access to the affected system. Successful exploitation requires system privileges and user interaction. An attacker could use the vulnerability to compromise confidentiality and the integrity of the affected system. At the stage of publishing this security advisory no public exploitation is known.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V15.1 Update 1), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V15.1 Update 1), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 und KTP900F (All versions < V15.1 Update 1), SIMATIC WinCC Runtime Advanced (All versions < V15.1 Update 1), SIMATIC WinCC Runtime Professional (All versions < V15.1 Update 1), SIMATIC WinCC (TIA Portal) (All versions < V15.1 Update 1), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). An attacker with network access to affected devices could potentially obtain a TLS session key. If the attacker is able to observe TLS traffic between a legitimate user and the device, then the attacker could decrypt the TLS traffic. The security vulnerability could be exploited by an attacker who has network access to the web interface of the device and who is able to observe TLS traffic between legitimate users and the web interface of the affected device. The vulnerability could impact the confidentiality of the communication between the affected device and a legitimate user. At the time of advisory publication no public exploitation of the security vulnerability was known.
A vulnerability has been identified in SINAMICS PERFECT HARMONY GH180 with NXG I control, MLFBs: 6SR2...-, 6SR3...-, 6SR4...- (All Versions with option G21, G22, G23, G26, G28, G31, G32, G38, G43 or G46), SINAMICS PERFECT HARMONY GH180 with NXG II control, MLFBs: 6SR2...-, 6SR3...-, 6SR4...- (All Versions with option G21, G22, G23, G26, G28, G31, G32, G38, G43 or G46). An improperly configured Parameter Read/Write execution via Field bus network may cause the controller to restart. The vulnerability could be exploited by an attacker with network access to the device. Successful exploitation requires no privileges and no user interaction. An attacker could use the vulnerability to compromise the availability of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V15.1 Update 1), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V15.1 Update 1), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 und KTP900F (All versions < V15.1 Update 1), SIMATIC WinCC Runtime Advanced (All versions < V15.1 Update 1), SIMATIC WinCC Runtime Professional (All versions < V15.1 Update 1), SIMATIC WinCC (TIA Portal) (All versions < V15.1 Update 1), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). The affected device offered SNMP read and write capacities with a publicly know hardcoded community string. The security vulnerability could be exploited by an attacker with network access to the affected device. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise confidentiality and integrity of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in LOGO! Soft Comfort (All versions < V8.3). The vulnerability could allow an attacker to execute arbitrary code if the attacker tricks a legitimate user to open a manipulated project. In order to exploit the vulnerability, a valid user must open a manipulated project file. No further privileges are required on the target system. The vulnerability could compromise the confidentiality, integrity and availability of the engineering station. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC PCS 7 V8.0 and earlier (All versions), SIMATIC PCS 7 V8.1 and newer (All versions), SIMATIC WinCC V7.2 and earlier (All versions), SIMATIC WinCC V7.3 and newer (All versions). An attacker with network access to affected installations, which are configured without "Encrypted Communication", can execute arbitrary code. The security vulnerability could be exploited by an unauthenticated attacker with network access to the affected installation. No user interaction is required to exploit this security vulnerability. The vulnerability impacts confidentiality, integrity, and availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Unencrypted storage of passwords in the project could allow an attacker with access to port 10005/tcp to obtain passwords of the device. The security vulnerability could be exploited by an unauthenticated attacker with network access to port 10005/tcp. No user interaction is required to exploit this security vulnerability. The vulnerability impacts confidentiality of the device. At the time of advisory publication no public exploitation of this security vulnerability was known
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Project data stored on the device, which is accessible via port 10005/tcp, can be decrypted due to a hardcoded encryption key. The security vulnerability could be exploited by an unauthenticated attacker with network access to port 10005/tcp. No user interaction is required to exploit this security vulnerability. The vulnerability impacts confidentiality of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). Attackers with access to port 10005/tcp could perform device reconfigurations and obtain project files from the devices. The system manual recommends to protect access to this port. The security vulnerability could be exploited by an unauthenticated attacker with network access to port 10005/tcp. No user interaction is required to exploit this security vulnerability. The vulnerability impacts confidentiality, integrity, and availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC PCS 7 V8.0 and earlier (All versions), SIMATIC PCS 7 V8.1 (All versions < V8.1 with WinCC V7.3 Upd 19), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1 with WinCC V7.4 SP1 Upd11), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP2 with WinCC V7.4 SP1 Upd11), SIMATIC WinCC (TIA Portal) V13 (All versions), SIMATIC WinCC (TIA Portal) V14 (All versions < V14 SP1 Upd 9), SIMATIC WinCC (TIA Portal) V15 (All versions < V15.1 Upd 3), SIMATIC WinCC Runtime Professional V13 (All versions), SIMATIC WinCC Runtime Professional V14 (All versions < V14.1 Upd 8), SIMATIC WinCC Runtime Professional V15 (All versions < V15.1 Upd 3), SIMATIC WinCC V7.2 and earlier (All versions), SIMATIC WinCC V7.3 (All versions < V7.3 Upd 19), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Upd 11), SIMATIC WinCC V7.5 (All versions < V7.5 Upd 3). An authenticatd attacker with network access to the DCOM interface could execute arbitrary commands with SYSTEM privileges. The vulnerability could be exploited by an attacker with network access to the affected system. Successful exploitation requires authentication with a low-privileged user account and no user interaction. An attacker could use the vulnerability to compromise confidentiality and integrity and availability of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC PCS 7 V8.0 and earlier (All versions), SIMATIC PCS 7 V8.1 (All versions < V8.1 with WinCC V7.3 Upd 19), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1 with WinCC V7.4 SP1 Upd11), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP2 with WinCC V7.4 SP1 Upd11), SIMATIC WinCC (TIA Portal) V13 (All versions), SIMATIC WinCC (TIA Portal) V14 (All versions < V14 SP1 Upd 9), SIMATIC WinCC (TIA Portal) V15 (All versions < V15.1 Upd 3), SIMATIC WinCC Runtime Professional V13 (All versions), SIMATIC WinCC Runtime Professional V14 (All versions < V14.1 Upd 8), SIMATIC WinCC Runtime Professional V15 (All versions < V15.1 Upd 3), SIMATIC WinCC V7.2 and earlier (All versions), SIMATIC WinCC V7.3 (All versions < V7.3 Upd 19), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Upd 11), SIMATIC WinCC V7.5 (All versions < V7.5 Upd 3). An attacker with local access to the project file could cause a Denial-of-Service condition on the affected product while the project file is loaded. Successful exploitation requires access to the project file. An attacker could use the vulnerability to compromise availability of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC PCS 7 V8.0 and earlier (All versions), SIMATIC PCS 7 V8.1 (All versions < V8.1 with WinCC V7.3 Upd 19), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1 with WinCC V7.4 SP1 Upd11), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP2 with WinCC V7.4 SP1 Upd11), SIMATIC WinCC (TIA Portal) V13 (All versions), SIMATIC WinCC (TIA Portal) V14 (All versions < V14 SP1 Upd 9), SIMATIC WinCC (TIA Portal) V15 (All versions < V15.1 Upd 3), SIMATIC WinCC Runtime Professional V13 (All versions), SIMATIC WinCC Runtime Professional V14 (All versions < V14.1 Upd 8), SIMATIC WinCC Runtime Professional V15 (All versions < V15.1 Upd 3), SIMATIC WinCC V7.2 and earlier (All versions), SIMATIC WinCC V7.3 (All versions < V7.3 Upd 19), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Upd 11), SIMATIC WinCC V7.5 (All versions < V7.5 Upd 3). An attacker with access to the project file could run arbitrary system commands with the privileges of the local database server. The vulnerability could be exploited by an attacker with access to the project file. The vulnerability does impact the confidentiality, integrity, and availability of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A command injection vulnerability is present that permits an unauthenticated user with access to the Aruba Instant web interface to execute arbitrary system commands within the underlying operating system. An attacker could use this ability to copy files, read configuration, write files, delete files, or reboot the device. Workaround: Block access to the Aruba Instant web interface from all untrusted users. Resolution: Fixed in Aruba Instant 4.2.4.12, 6.5.4.11, 8.3.0.6, and 8.4.0.1
A reflected cross-site scripting (XSS) vulnerability is present in an unauthenticated Aruba Instant web interface. An attacker could use this vulnerability to trick an IAP administrator into clicking a link which could then take administrative actions on the Instant cluster, or expose the session cookie for an administrative session. Workaround: Administrators should make sure they log out of the Aruba Instant UI when not actively managing the system, and should use caution clicking links from external sources while logged into the IAP administrative interface. Resolution: Fixed in Aruba Instant 4.2.4.12, 6.5.4.11, 8.3.0.6, and 8.4.0.0
If a process running within Aruba Instant crashes, it may leave behind a "core dump", which contains the memory contents of the process at the time it crashed. It was discovered that core dumps are stored in a way that unauthenticated users can access them through the Aruba Instant web interface. Core dumps could contain sensitive information such as keys and passwords. Workaround: Block access to the Aruba Instant web interface from all untrusted users. Resolution: Fixed in Aruba Instant 4.2.4.12, 6.5.4.11, 8.3.0.6, and 8.4.0.0
A command injection vulnerability is present in Aruba Instant that permits an authenticated administrative user to execute arbitrary commands on the underlying operating system. A malicious administrator could use this ability to install backdoors or change system configuration in a way that would not be logged. Workaround: None. Resolution: Fixed in Aruba Instant 4.2.4.12, 6.5.4.11, 8.3.0.6, and 8.4.0.0
ABB, Phoenix Contact, Schneider Electric, Siemens, WAGO - Programmable Logic Controllers, multiple versions. Researchers have found some controllers are susceptible to a denial-of-service attack due to a flood of network packets.
A vulnerability has been identified in Spectrum Power 4 (with Web Office Portal). An attacker with network access to the web server on port 80/TCP or 443/TCP could execute system commands with administrative privileges. The security vulnerability could be exploited by an unauthenticated attacker with network access to the affected service. No user interaction is required to exploit this security vulnerability. Successful exploitation of the security vulnerability compromises confidentiality, integrity or availability of the targeted system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC CP 443-1 OPC UA (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V2.7), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (incl. SIPLUS variants) (All versions < V15.1 Upd 4), SIMATIC HMI Comfort Panels 4" - 22" (incl. SIPLUS variants) (All versions < V15.1 Upd 4), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Upd 4), SIMATIC IPC DiagMonitor (All versions < V5.1.3), SIMATIC NET PC Software V13 (All versions), SIMATIC NET PC Software V14 (All versions < V14 SP1 Update 14), SIMATIC NET PC Software V15 (All versions), SIMATIC RF188C (All versions < V1.1.0), SIMATIC RF600R family (All versions < V3.2.1), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.5 < V2.6.1), SIMATIC S7-1500 Software Controller (All versions between V2.5 (including) and V2.7 (excluding)), SIMATIC WinCC OA (All versions < V3.15 P018), SIMATIC WinCC Runtime Advanced (All versions < V15.1 Upd 4), SINEC NMS (All versions < V1.0 SP1), SINEMA Server (All versions < V14 SP2), SINUMERIK OPC UA Server (All versions < V2.1), TeleControl Server Basic (All versions < V3.1.1). Specially crafted network packets sent to affected devices on port 4840/tcp could allow an unauthenticated remote attacker to cause a denial of service condition of the OPC communication or crash the device. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the OPC communication.
A vulnerability has been identified in SINEMA Remote Connect Server (All versions < V2.0). Due to insufficient checking of user permissions, an attacker may access URLs that require special authorization. An attacker must have access to a low privileged account in order to exploit the vulnerability.
The webserver of the affected devices contains a vulnerability that may lead to a denial of service condition. An attacker may cause a denial of service situation which leads to a restart of the webserver of the affected device. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device.
A vulnerability has been identified in SIMATIC S7-300 CPUs (All versions < V3.X.16). The affected CPUs improperly validate S7 communication packets which could cause a Denial-of-Service condition of the CPU. The CPU will remain in DEFECT mode until manual restart. Successful exploitation requires an attacker to be able to send a specially crafted S7 communication packet to a communication interface of the CPU. This includes Ethernet, PROFIBUS, and Multi Point Interfaces (MPI). No user interaction or privileges are required to exploit the security vulnerability. The vulnerability could allow causing a Denial-of-Service condition of the core functionality of the CPU, compromising the availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known. Siemens confirms the security vulnerability and provides mitigations to resolve the security issue.
A vulnerability has been identified in SIMATIC S7-1500 CPU (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 CPU (All versions <= V1.8.5). Specially crafted network packets sent to port 80/tcp or 443/tcp could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/tcp or 443/tcp. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC S7-1500 CPU (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 CPU (All versions <= V1.8.5). Specially crafted network packets sent to port 80/tcp or 443/tcp could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/tcp or 443/tcp. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in CP 1604 (All versions), CP 1616 (All versions). The integrated configuration web server of the affected CP devices could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link. Successful exploitation requires user interaction by a legitimate user. A successful attack could allow an attacker to trigger actions via the web interface that the legitimate user is allowed to perform. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in CP 1604 (All versions), CP 1616 (All versions). The integrated web server of the affected CP devices could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into following a malicious link. User interaction is required for a successful exploitation. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in CP 1604 (All versions), CP 1616 (All versions). An attacker with network access to port 23/tcp could extract internal communication data or cause a Denial-of-Service condition. Successful exploitation requires network access to a vulnerable device. At the time of advisory publication no public exploitation of this vulnerability was known.
The monitor barrier of the affected products insufficiently blocks data from being forwarded over the mirror port into the mirrored network. An attacker could use this behavior to transmit malicious packets to systems in the mirrored network, possibly influencing their configuration and runtime behavior.
A vulnerability has been identified in SICAM A8000 CP-8000 (All versions < V14), SICAM A8000 CP-802X (All versions < V14), SICAM A8000 CP-8050 (All versions < V2.00). Specially crafted network packets sent to port 80/TCP or 443/TCP could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the web server. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/TCP or 443/TCP. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the web server. A system reboot is required to recover the web service of the device. At the time of advisory update, exploit code for this security vulnerability is public.
A vulnerability has been identified in Firmware variant IEC 61850 for EN100 Ethernet module (All versions < V4.35), Firmware variant MODBUS TCP for EN100 Ethernet module (All versions), Firmware variant DNP3 TCP for EN100 Ethernet module (All versions), Firmware variant IEC104 for EN100 Ethernet module (All versions), Firmware variant Profinet IO for EN100 Ethernet module (All versions), SIPROTEC 5 relays with CPU variants CP300 and CP100 and the respective Ethernet communication modules (All versions < V7.82), SIPROTEC 5 relays with CPU variants CP200 and the respective Ethernet communication modules (All versions < V7.58). Specially crafted packets to port 102/tcp could cause a denial-of-service condition in the affected products. A manual restart is required to recover the EN100 module functionality of the affected devices. Successful exploitation requires an attacker with network access to send multiple packets to the affected products or modules. As a precondition the IEC 61850-MMS communication needs to be activated on the affected products or modules. No user interaction or privileges are required to exploit the vulnerability. The vulnerability could allow causing a Denial-of-Service condition of the network functionality of the device, compromising the availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
UltraVNC revision 1211 contains multiple memory leaks (CWE-665) in VNC server code, which allows an attacker to read stack memory and can be abused for information disclosure. Combined with another vulnerability, it can be used to leak stack memory and bypass ASLR. This attack appears to be exploitable via network connectivity. These vulnerabilities have been fixed in revision 1212.
UltraVNC revision 1211 has a stack buffer overflow vulnerability in VNC server code inside file transfer request handler, which can result in Denial of Service (DoS). This attack appears to be exploitable via network connectivity. This vulnerability has been fixed in revision 1212.
UltraVNC revision 1211 has multiple improper null termination vulnerabilities in VNC server code, which result in out-of-bound data being accessed by remote users. This attack appears to be exploitable via network connectivity. These vulnerabilities have been fixed in revision 1212.
UltraVNC revision 1211 has a heap buffer overflow vulnerability in VNC server code inside file transfer offer handler, which can potentially in result code execution. This attack appears to be exploitable via network connectivity. This vulnerability has been fixed in revision 1212.
UltraVNC revision 1211 has a heap buffer overflow vulnerability in VNC server code inside file transfer request handler, which can potentially result in code execution. This attack appears to be exploitable via network connectivity. This vulnerability has been fixed in revision 1212.
UltraVNC revision 1211 has multiple off-by-one vulnerabilities in VNC server code, which can potentially result in code execution. This attack appears to be exploitable via network connectivity. These vulnerabilities have been fixed in revision 1212.
UltraVNC revision 1211 has a heap buffer overflow vulnerability in VNC server code inside file transfer handler, which can potentially result code execution. This attack appears to be exploitable via network connectivity. This vulnerability has been fixed in revision 1212.
UltraVNC revision 1206 has stack-based Buffer overflow vulnerability in VNC client code inside FileTransfer module, which leads to a denial of service (DoS) condition. This attack appear to be exploitable via network connectivity. This vulnerability has been fixed in revision 1207.
UltraVNC revision 1206 has multiple off-by-one vulnerabilities in VNC client code connected with improper usage of ClientConnection::ReadString function, which can potentially result code execution. This attack appears to be exploitable via network connectivity. These vulnerabilities have been fixed in revision 1207.
UltraVNC revision 1205 has stack-based buffer overflow vulnerability in VNC client code inside ShowConnInfo routine, which leads to a denial of service (DoS) condition. This attack appear to be exploitable via network connectivity. User interaction is required to trigger this vulnerability. This vulnerability has been fixed in revision 1206.
UltraVNC revision 1203 has multiple heap buffer overflow vulnerabilities in VNC client code inside Ultra decoder, which results in code execution. This attack appears to be exploitable via network connectivity. These vulnerabilities have been fixed in revision 1204.
UltraVNC revision 1198 contains multiple memory leaks (CWE-655) in VNC client code, which allow an attacker to read stack memory and can be abused for information disclosure. Combined with another vulnerability, it can be used to leak stack memory and bypass ASLR. This attack appears to be exploitable via network connectivity. These vulnerabilities have been fixed in revision 1199.
UltraVNC revision 1198 has a heap buffer overflow vulnerability in VNC client code which results code execution. This attack appears to be exploitable via network connectivity. This vulnerability has been fixed in revision 1199.
libcurl versions from 7.36.0 to before 7.64.0 are vulnerable to a stack-based buffer overflow. The function creating an outgoing NTLM type-3 header (`lib/vauth/ntlm.c:Curl_auth_create_ntlm_type3_message()`), generates the request HTTP header contents based on previously received data. The check that exists to prevent the local buffer from getting overflowed is implemented wrongly (using unsigned math) and as such it does not prevent the overflow from happening. This output data can grow larger than the local buffer if very large 'nt response' data is extracted from a previous NTLMv2 header provided by the malicious or broken HTTP server. Such a 'large value' needs to be around 1000 bytes or more. The actual payload data copied to the target buffer comes from the NTLMv2 type-2 response header.
libcurl versions from 7.36.0 to before 7.64.0 is vulnerable to a heap buffer out-of-bounds read. The function handling incoming NTLM type-2 messages (`lib/vauth/ntlm.c:ntlm_decode_type2_target`) does not validate incoming data correctly and is subject to an integer overflow vulnerability. Using that overflow, a malicious or broken NTLM server could trick libcurl to accept a bad length + offset combination that would lead to a buffer read out-of-bounds.
An exploitable heap overflow vulnerability exists in the WkbProgramLow function of WibuKey Network server management, version 6.40.2402.500. A specially crafted TCP packet can cause a heap overflow, potentially leading to remote code execution. An attacker can send a malformed TCP packet to trigger this vulnerability.
An issue was discovered in OpenSSH 7.9. Due to the scp implementation being derived from 1983 rcp, the server chooses which files/directories are sent to the client. However, the scp client only performs cursory validation of the object name returned (only directory traversal attacks are prevented). A malicious scp server (or Man-in-The-Middle attacker) can overwrite arbitrary files in the scp client target directory. If recursive operation (-r) is performed, the server can manipulate subdirectories as well (for example, to overwrite the .ssh/authorized_keys file).
In OpenSSH 7.9, due to accepting and displaying arbitrary stderr output from the server, a malicious server (or Man-in-The-Middle attacker) can manipulate the client output, for example to use ANSI control codes to hide additional files being transferred.
An issue was discovered in OpenSSH 7.9. Due to missing character encoding in the progress display, a malicious server (or Man-in-The-Middle attacker) can employ crafted object names to manipulate the client output, e.g., by using ANSI control codes to hide additional files being transferred. This affects refresh_progress_meter() in progressmeter.c.
LibVNC through 0.9.12 contains a heap out-of-bounds write vulnerability in libvncserver/rfbserver.c. The fix for CVE-2018-15127 was incomplete.
LibVNC before 0.9.12 contains a heap out-of-bounds write vulnerability in libvncserver/rfbserver.c. The fix for CVE-2018-15127 was incomplete.
LibVNC before 0.9.12 contains multiple heap out-of-bounds write vulnerabilities in libvncclient/rfbproto.c. The fix for CVE-2018-20019 was incomplete.
In OpenSSH 7.9, scp.c in the scp client allows remote SSH servers to bypass intended access restrictions via the filename of . or an empty filename. The impact is modifying the permissions of the target directory on the client side.
LibVNC before commit a83439b9fbe0f03c48eb94ed05729cb016f8b72f contains multiple heap out-of-bound write vulnerabilities in VNC client code that can result remote code execution
A vulnerability has been identified in SIMATIC S7-400 CPU 412-1 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416-2 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416F-2 DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 417-4 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 PN V7 (All versions < V7.0.3), SIMATIC S7-400 H V4.5 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 H V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.9), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-410 CPU family (incl. SIPLUS variants) (All versions < V8.2.1), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 V7 (All versions), SIPLUS S7-400 CPU 417-4 V7 (All versions). Sending of specially crafted packets to port 102/tcp via Ethernet interface via PROFIBUS or Multi Point Interfaces (MPI) could cause a denial of service condition on affected devices. Flashing with a firmware image may be required to recover the CPU. Successful exploitation requires an attacker to have network access to port 102/tcp via Ethernet interface or to be able to send messages via PROFIBUS or Multi Point Interfaces (MPI) to the device. No user interaction is required. If no access protection is configured, no privileges are required to exploit the security vulnerability. The vulnerability could allow causing a denial of service condition of the core functionality of the CPU, compromising the availability of the system.
A vulnerability has been identified in SIMATIC S7-400 CPU 412-1 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-2 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 DP V7 (All versions), SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416-2 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 DP V7 (All versions), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416F-2 DP V7 (All versions), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 417-4 DP V7 (All versions), SIMATIC S7-400 CPU 412-2 PN V7 (All versions < V7.0.3), SIMATIC S7-400 H V4.5 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 H V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.9), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-410 CPU family (incl. SIPLUS variants) (All versions < V8.2.1), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 V7 (All versions), SIPLUS S7-400 CPU 417-4 V7 (All versions). Specially crafted packets sent to port 102/tcp via Ethernet interface, via PROFIBUS, or via Multi Point Interfaces (MPI) could cause the affected devices to go into defect mode. Manual reboot is required to resume normal operation. Successful exploitation requires an attacker to be able to send specially crafted packets to port 102/tcp via Ethernet interface, via PROFIBUS or Multi Point Interfaces (MPI). No user interaction and no user privileges are required to exploit the security vulnerability. The vulnerability could allow causing a denial of service condition of the core functionality of the CPU, compromising the availability of the system.
A vulnerability has been identified in SCALANCE S602 (All versions < V4.0.1.1), SCALANCE S612 (All versions < V4.0.1.1), SCALANCE S623 (All versions < V4.0.1.1), SCALANCE S627-2M (All versions < V4.0.1.1). The integrated web server could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. User interaction is required for a successful exploitation. The user must be logged into the web interface in order for the exploitation to succeed. At the stage of publishing this security advisory no public exploitation is known.
A vulnerability has been identified in SIMATIC S7-1200 (All versions), SIMATIC S7-1500 (All Versions < V2.6). An attacker could exhaust the available connection pool of an affected device by opening a sufficient number of connections to the device. Successful exploitation requires an attacker to be able to send packets to port 102/tcp of the affected device. No user interaction and no user privileges are required to exploit the vulnerability. The vulnerability, if exploited, could cause a Denial-of-Service condition impacting the availability of the system. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V14), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V14), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V14), SIMATIC WinCC Runtime Advanced (All versions < V14), SIMATIC WinCC Runtime Professional (All versions < V14), SIMATIC WinCC (TIA Portal) (All versions < V14), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). The integrated web server (port 80/tcp and port 443/tcp) of the affected devices could allow an attacker to inject HTTP headers. An attacker must trick a valid user who is authenticated to the device into clicking on a malicious link to exploit the vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V15 Update 4), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V15 Update 4), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15 Update 4), SIMATIC WinCC Runtime Advanced (All versions < V15 Update 4), SIMATIC WinCC Runtime Professional (All versions < V15 Update 4), SIMATIC WinCC (TIA Portal) (All versions < V15 Update 4), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). The webserver of affected HMI devices may allow URL redirections to untrusted websites. An attacker must trick a valid user who is authenticated to the device into clicking on a malicious link to exploit the vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V15 Update 4), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V15 Update 4), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15 Update 4), SIMATIC WinCC Runtime Advanced (All versions < V15 Update 4), SIMATIC WinCC Runtime Professional (All versions < V15 Update 4), SIMATIC WinCC (TIA Portal) (All versions < V15 Update 4), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). A directory traversal vulnerability could allow to download arbitrary files from the device. The security vulnerability could be exploited by an attacker with network access to the integrated web server. No user interaction and no authentication is required to exploit the vulnerability. The vulnerability impacts the confidentiality of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC STEP 7 (TIA Portal) (All Versions < V15.1). Password hashes with insufficient computational effort could allow an attacker to access to a project file and reconstruct passwords. The vulnerability could be exploited by an attacker with local access to the project file. No user interaction is required to exploit the vulnerability. The vulnerability could allow the attacker to obtain certain passwords from the project. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in SIMATIC IT LMS (All versions), SIMATIC IT Production Suite (Versions V7.1 < V7.1 Upd3), SIMATIC IT UA Discrete Manufacturing (Versions < V1.2), SIMATIC IT UA Discrete Manufacturing (Versions V1.2), SIMATIC IT UA Discrete Manufacturing (Versions V1.3), SIMATIC IT UA Discrete Manufacturing (Versions V2.3), SIMATIC IT UA Discrete Manufacturing (Versions V2.4). An attacker with network access to the installation could bypass the application-level authentication. In order to exploit the vulnerability, an attacker must obtain network access to an affected installation and must obtain a valid username to the system. Successful exploitation requires no user privileges and no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in TIM 1531 IRC (All version < V2.0). The devices was missing proper authentication on port 102/tcp, although configured. Successful exploitation requires an attacker to be able to send packets to port 102/tcp of the affected device. No user interaction and no user privileges are required to exploit the vulnerability. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). Specially crafted network packets sent to port 102/tcp (ISO-TSAP) could allow a remote attacker to either cause a Denial-of-Service condition of the integrated software firewall or allow to execute code in the context of the software firewall. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 102/tcp. Successful exploitation requires no user privileges and no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). A local attacker could use ioctl calls to do out of bounds reads, arbitrary writes, or execute code in kernel mode. The security vulnerability could be exploited by an attacker with local access to the affected systems. Successful exploitation requires user privileges but no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). The integrated VNC server on port 5900/tcp of the affected products could allow a remote attacker to cause a Denial-of-Service condition of the VNC server. Please note that this vulnerability is only exploitable if port 5900/tcp is manually opened in the firewall configuration of network port X130. The security vulnerability could be exploited by an attacker with network access to the affected devices and port. Successful exploitation requires no privileges and no user interaction. The vulnerability could allow an attacker to compromise availability of the VNC server. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). A buffer overflow in the service command application could allow a local attacker to execute code with elevated privileges. The security vulnerability could be exploited by an attacker with local access to the affected systems. Successful exploitation requires user privileges but no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). By sending a specially crafted authentication request to the affected systems a remote attacker could escalate his privileges to an elevated user account but not to root. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no privileges and no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). A local attacker with user privileges could use the service command application for privilege escalation to an elevated user but not root. The security vulnerability could be exploited by an attacker with local access to the affected systems. Successful exploitation requires user privileges but no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). A local attacker with elevated user privileges (manufact) could modify a CRAMFS archive so that after reboot the system loads the modified CRAMFS file and attacker-controlled code is executed with root privileges. The security vulnerability could be exploited by an attacker with local access to the affected systems. Successful exploitation requires elevated user privileges (manufact) but no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 808D V4.7 (All versions), SINUMERIK 808D V4.8 (All versions), SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). A local attacker could modify a user-writeable configuration file so that after reboot or manual initiation the system reloads the modified configuration file and attacker-controlled code is executed with elevated privileges. The security vulnerability could be exploited by an attacker with local access to the affected system. Successful exploitation requires user privileges but no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). The integrated VNC server on port 5900/tcp of the affected products could allow a remote attacker to execute code with privileged permissions on the system by sending specially crafted network requests to port 5900/tcp. Please note that this vulnerability is only exploitable if port 5900/tcp is manually opened in the firewall configuration of network port X130. The security vulnerability could be exploited by an attacker with network access to the affected devices and port. Successful exploitation requires no privileges and no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the VNC server. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). The integrated web server on port 4842/tcp of the affected products could allow a remote attacker to execute code with privileged permissions on the system by sending specially crafted network requests to port 4842/tcp. Please note that this vulnerability is only exploitable if port 4842/tcp is manually opened in the firewall configuration of network port X130. The security vulnerability could be exploited by an attacker with network access to the affected devices on port 4842/tcp. Successful exploitation requires no privileges and no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the web server. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC ET 200SP Open Controller (All versions >= V2.0 and < V2.1.6), SIMATIC S7-1500 Software Controller (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 incl. F (All versions >= V2.0 and < V2.5). An attacker can cause a denial-of-service condition on the network stack by sending a large number of specially crafted packets to the PLC. The PLC will lose its ability to communicate over the network. This vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no privileges and no user interaction. An attacker could use this vulnerability to compromise availability of the network connectivity. At the time of advisory publication no public exploitation of this vulnerability was known.
A vulnerability has been identified in SIMATIC S7-1200 CPU family version 4 (All versions < V4.2.3). The web interface could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link. Successful exploitation requires user interaction by a legitimate user, who must be authenticated to the web interface. A successful attack could allow an attacker to trigger actions via the web interface that the legitimate user is allowed to perform. This could allow the attacker to read or modify parts of the device configuration.
Multiple memory leaks in Intel AMT in Intel CSME firmware versions before 12.0.5 may allow an unauthenticated user with Intel AMT provisioned to potentially cause a partial denial of service via network access.
Multiple buffer overflows in Intel AMT in Intel CSME firmware versions before version 12.0.5 may allow a privileged user to potentially execute arbitrary code with Intel AMT execution privilege via local access.
Bleichenbacher-style side channel vulnerability in TLS implementation in Intel Active Management Technology before 12.0.5 may allow an unauthenticated user to potentially obtain the TLS session key via the network.
A vulnerability has been identified in SCALANCE X300 (All versions < V4.0.0), SCALANCE X408 (All versions < V4.0.0), SCALANCE X414 (All versions). The web interface on port 443/tcp could allow an attacker to cause a Denial-of-Service condition by sending specially crafted packets to the web server. The device will automatically reboot, impacting network availability for other devices. An attacker must have network access to port 443/tcp to exploit the vulnerability. Neither valid credentials nor interaction by a legitimate user is required to exploit the vulnerability. There is no confidentiality or integrity impact, only availability is temporarily impacted. This vulnerability could be triggered by publicly available tools.
A vulnerability has been identified in SIEMENS TD Keypad Designer (All versions). A DLL hijacking vulnerability exists in all versions of SIEMENS TD Keypad Designer which could allow an attacker to execute code with the permission of the user running TD Designer. The attacker must have write access to the directory containing the TD project file in order to exploit the vulnerability. A legitimate user with higher privileges than the attacker must open the TD project in order for this vulnerability to be exploited. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC WinCC OA V3.14 and prior (All versions < V3.14-P021). Improper access control to a data point of the affected product could allow an unauthenticated remote user to escalate its privileges in the context of SIMATIC WinCC OA V3.14. This vulnerability could be exploited by an attacker with network access to port 5678/TCP of the SIMATIC WinCC OA V3.14 server. Successful exploitation requires no user privileges and no user interaction. This vulnerability could allow an attacker to compromise integrity and availability of the SIMATIC WinCC OA system. At the time of advisory publication no public exploitation of this vulnerability was known.
The Linux kernel, versions 3.9+, is vulnerable to a denial of service attack with low rates of specially modified packets targeting IP fragment re-assembly. An attacker may cause a denial of service condition by sending specially crafted IP fragments. Various vulnerabilities in IP fragmentation have been discovered and fixed over the years. The current vulnerability (CVE-2018-5391) became exploitable in the Linux kernel with the increase of the IP fragment reassembly queue size.
OpenSSH through 7.7 is prone to a user enumeration vulnerability due to not delaying bailout for an invalid authenticating user until after the packet containing the request has been fully parsed, related to auth2-gss.c, auth2-hostbased.c, and auth2-pubkey.c.
A vulnerability has been identified in Automation License Manager 5 (All versions < 5.3.4.4). An attacker with network access to the device could send specially crafted network packets to determine whether or not a network port on another remote system is accessible or not. This allows the attacker to do basic network scanning using the victims machine. Successful exploitation requires a network connection to the affected device. The attacker does not need privileges, no user interaction is required. The impact is limited to determining whether or not a port on a target system is accessible by the affected device.
A vulnerability has been identified in Automation License Manager 5 (All versions < 5.3.4.4), Automation License Manager 6 (All versions < 6.0.1). A directory traversal vulnerability could allow a remote attacker to move arbitrary files, which can result in code execution, compromising confidentiality, integrity and availability of the system. Successful exploitation requires a network connection to the affected device. The attacker does not need privileges or special conditions of the system, but user interaction is required.
A vulnerability has been identified in SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V10, V11, V12 (All versions), SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V13 (All versions < V13 SP2 Update 2), SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V14 (All versions < V14 SP1 Update 6), SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V15 (All versions < V15 Update 2). Improper file permissions in the default installation of TIA Portal may allow an attacker with local file system access to manipulate resources which may be transferred to devices and executed there by a different user. No special privileges are required, but the victim needs to transfer the manipulated files to a device. Execution is caused on the target device rather than on the PG device.
A vulnerability has been identified in SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V10, V11, V12 (All versions), SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V13 (All versions < V13 SP2 Update 2), SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V14 (All versions < V14 SP1 Update 6), SIMATIC STEP 7 (TIA Portal) and WinCC (TIA Portal) V15 (All versions < V15 Update 2). Improper file permissions in the default installation of TIA Portal may allow an attacker with local file system access to insert specially crafted files which may prevent TIA Portal startup (Denial-of-Service) or lead to local code execution. No special privileges are required, but the victim needs to attempt to start TIA Portal after the manipulation.
A vulnerability has been identified in Firmware variant IEC 61850 for EN100 Ethernet module (All versions < V4.33), Firmware variant PROFINET IO for EN100 Ethernet module (All versions), Firmware variant Modbus TCP for EN100 Ethernet module (All versions), Firmware variant DNP3 TCP for EN100 Ethernet module (All versions), Firmware variant IEC104 for EN100 Ethernet module (All versions < V1.22). Specially crafted packets to port 102/tcp could cause a denial-of-service condition in the EN100 communication module if oscillographs are running. A manual restart is required to recover the EN100 module functionality. Successful exploitation requires an attacker with network access to send multiple packets to the EN100 module. As a precondition the IEC 61850-MMS communication needs to be activated on the affected EN100 modules. No user interaction or privileges are required to exploit the security vulnerability. The vulnerability could allow causing a Denial-of-Service condition of the network functionality of the device, compromising the availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in Firmware variant IEC 61850 for EN100 Ethernet module (All versions < V4.33), Firmware variant PROFINET IO for EN100 Ethernet module (All versions), Firmware variant Modbus TCP for EN100 Ethernet module (All versions), Firmware variant DNP3 TCP for EN100 Ethernet module (All versions), Firmware variant IEC104 for EN100 Ethernet module (All versions < V1.22), SIPROTEC 5 relays with CPU variants CP300 and CP100 and the respective Ethernet communication modules (All versions < V7.80), SIPROTEC 5 relays with CPU variants CP200 and the respective Ethernet communication modules (All versions < V7.58). Specially crafted packets to port 102/tcp could cause a denial-of-service condition in the affected products. A manual restart is required to recover the EN100 module functionality of the affected devices. Successful exploitation requires an attacker with network access to send multiple packets to the affected products or modules. As a precondition the IEC 61850-MMS communication needs to be activated on the affected products or modules. No user interaction or privileges are required to exploit the vulnerability. The vulnerability could allow causing a Denial-of-Service condition of the network functionality of the device, compromising the availability of the system. At the time of advisory publication no public exploitation of this security vulnerability was known.
A reflected Cross-Site-Scripting (XSS) vulnerability has been identified in Siemens PLM Software TEAMCENTER (V9.1.2.5). If a user visits the login portal through the URL crafted by the attacker, the attacker can insert html/javascript and thus alter/rewrite the login portal page. Siemens PLM Software TEAMCENTER V9.1.3 and newer are not affected.
A vulnerability has been identified in IEC 61850 system configurator (All versions < V5.80), DIGSI 5 (affected as IEC 61850 system configurator is incorporated) (All versions < V7.80), DIGSI 4 (All versions < V4.93), SICAM PAS/PQS (All versions < V8.11), SICAM PQ Analyzer (All versions < V3.11), SICAM SCC (All versions < V9.02 HF3). A service of the affected products listening on all of the host's network interfaces on either port 4884/TCP, 5885/TCP, or port 5886/TCP could allow an attacker to either exfiltrate limited data from the system or to execute code with Microsoft Windows user permissions. Successful exploitation requires an attacker to be able to send a specially crafted network request to the vulnerable service and a user interacting with the service's client application on the host. In order to execute arbitrary code with Microsoft Windows user permissions, an attacker must be able to plant the code in advance on the host by other means. The vulnerability has limited impact to confidentiality and integrity of the affected system. At the time of advisory publication no public exploitation of this security vulnerability was known. Siemens confirms the security vulnerability and provides mitigations to resolve the security issue.
In J2 Innovations FIN Stack 4.0, the authentication webform is vulnerable to reflected XSS via the query string to /login.
A vulnerability has been identified in SICLOCK TC100 (All versions) and SICLOCK TC400 (All versions). An attacker with administrative access to the device's management interface could lock out legitimate users. Manual interaction is required to restore the access of legitimate users.
A vulnerability has been identified in SICLOCK TC100 (All versions) and SICLOCK TC400 (All versions). Unencrypted storage of passwords in the client configuration files and during network transmission could allow an attacker in a privileged position to obtain access passwords.
A vulnerability has been identified in SICLOCK TC100 (All versions) and SICLOCK TC400 (All versions). An attacker with network access to port 69/udp could modify the administrative client stored on the device. If a legitimate user downloads and executes the modified client from the affected device, then he/she could obtain code execution on the client system.
A vulnerability has been identified in SICLOCK TC100 (All versions) and SICLOCK TC400 (All versions). An attacker with network access to port 69/udp could modify the firmware of the device.
A vulnerability has been identified in SICLOCK TC100 (All versions) and SICLOCK TC400 (All versions). An attacker with network access to the device could potentially circumvent the authentication mechanism if he/she is able to obtain certain knowledge specific to the attacked device.
A vulnerability has been identified in SICLOCK TC100 (All versions) and SICLOCK TC400 (All versions). An attacker with network access to the device could cause a Denial-of-Service condition by sending certain packets to the device, causing potential reboots of the device. The core functionality of the device could be impacted. The time serving functionality recovers when time synchronization with GPS devices or other NTP servers are completed.
A vulnerability has been identified in SCALANCE M875 (All versions). An authenticated remote attacker with access to the web interface (443/tcp), could potentially read and download arbitrary files from the device's file system. Successful exploitation requires that the attacker has network access to the web interface. The attacker must be authenticated as administrative user to exploit the security vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE M875 (All versions). An authenticated remote attacker with access to the web interface (443/tcp), could execute arbitrary operating system commands. Successful exploitation requires that the attacker has network access to the web interface. The attacker must be authenticated as administrative user to exploit the security vulnerability. The vulnerability could allow an attacker to execute arbitrary code on the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE M875 (All versions). An authenticated remote attacker with access to the web interface (443/tcp), could execute arbitrary operating system commands. Successful exploitation requires that the attacker has network access to the web interface. The attacker must be authenticated as administrative user to exploit the security vulnerability. The vulnerability could allow an attacker to execute arbitrary code on the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in RAPIDLab 1200 systems / RAPIDPoint 400 systems / RAPIDPoint 500 systems (All versions_without_ use of Siemens Healthineers Informatics products), RAPIDLab 1200 Series (All versions < V3.3 _with_ Siemens Healthineers Informatics products), RAPIDPoint 500 systems (All versions >= V3.0 _with_ Siemens Healthineers Informatics products), RAPIDPoint 500 systems (V2.4.X_with_ Siemens Healthineers Informatics products), RAPIDPoint 500 systems (All versions =< V2.3 _with_ Siemens Healthineers Informatics products), RAPIDPoint 400 systems (All versions _with_ Siemens Healthineers Informatics products). A factory account with hardcoded password might allow attackers access to the device over port 5900/tcp. Successful exploitation requires no user interaction or privileges and impacts the confidentiality, integrity, and availability of the affected device. At the time of advisory publication, no public exploitation of this security vulnerability is known. Siemens Healthineers confirms the security vulnerability and provides mitigations to resolve the security issue.
A vulnerability has been identified in RAPIDLab 1200 systems / RAPIDPoint 400 systems / RAPIDPoint 500 systems (All versions_without_ use of Siemens Healthineers Informatics products), RAPIDLab 1200 Series (All versions < V3.3 _with_ Siemens Healthineers Informatics products), RAPIDPoint 500 systems (All versions >= V3.0 _with_ Siemens Healthineers Informatics products), RAPIDPoint 500 systems (V2.4.X_with_ Siemens Healthineers Informatics products), RAPIDPoint 500 systems (All versions =< V2.3 _with_ Siemens Healthineers Informatics products), RAPIDPoint 400 systems (All versions _with_ Siemens Healthineers Informatics products). Remote attackers with either local or remote credentialed access to the "Remote View" feature might be able to elevate their privileges, compromising confidentiality, integrity, and availability of the system. No special skills or user interaction are required to perform this attack. At the time of advisory publication, no public exploitation of this security vulnerability is known. Siemens Healthineers confirms the security vulnerability and provides mitigations to resolve the security issue.
A vulnerability has been identified in SCALANCE M875 (All versions). An attacker with access to the local file system might obtain passwords for administrative users. Successful exploitation requires read access to files on the local file system. A successful attack could allow an attacker to obtain administrative passwords. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE M875 (All versions). The web interface on port 443/tcp could allow a stored Cross-Site Scripting (XSS) attack if an unsuspecting user is tricked into accessing a malicious link. Successful exploitation requires that the attacker has access to the web interface of an affected device. The attacker must be authenticated as administrative user on the web interface. Afterwards, a legitimate user must access the web interface. A successful attack could allow an attacker to execute malicious code in the browser of a legitimate user. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE M875 (All versions). The web interface on port 443/tcp could allow a Cross-Site Request Forgery (CSRF) attack if an unsuspecting user is tricked into accessing a malicious link. Successful exploitation requires user interaction by an legitimate user, who must be authenticated to the web interface as administrative user. A successful attack could allow an attacker to interact with the web interface as an administrative user. This could allow the attacker to read or modify the device configuration, or to exploit other vulnerabilities that require authentication as administrative user. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.3), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.4.1), SCALANCE X-200RNA switch family (All versions < V3.2.7), SCALANCE X-300 switch family (incl. X408 and SIPLUS NET variants) (All versions < V4.1.3). The integrated configuration web server of the affected devices could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into accessing a malicious link. User interaction is required for a successful exploitation. The user must be logged into the web interface in order for the exploitation to succeed. At the stage of publishing this security advisory no public exploitation is known. The vendor has confirmed the vulnerability and provides mitigations to resolve it.
A vulnerability has been identified in SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.4.1), SCALANCE X-200RNA switch family (All versions < V3.2.7), SCALANCE X-300 switch family (incl. X408 and SIPLUS NET variants) (All versions < V4.1.3). A remote, authenticated attacker with access to the configuration web server could be able to store script code on the web site, if the HRP redundancy option is set. This code could be executed in the web browser of victims visiting this web site (XSS), affecting its confidentiality, integrity and availability. User interaction is required for successful exploitation, as the user needs to visit the manipulated web site. At the stage of publishing this security advisory no public exploitation is known. The vendor has confirmed the vulnerability and provides mitigations to resolve it.
A vulnerability has been identified in RFID 181EIP (All versions), RUGGEDCOM Win (V4.4, V4.5, V5.0, and V5.1), SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.3), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.4.1), SCALANCE X-200RNA switch family (All versions < V3.2.6), SCALANCE X-300 switch family (incl. SIPLUS NET variants) (All versions < V4.1.3), SCALANCE X408 (All versions < V4.1.3), SCALANCE X414 (All versions), SIMATIC RF182C (All versions). Unprivileged remote attackers located in the same local network segment (OSI Layer 2) could gain remote code execution on the affected products by sending a specially crafted DHCP response to a client's DHCP request.
An exploitable denial of service vulnerability exists in the origin timestamp check functionality of ntpd 4.2.8p9. A specially crafted unauthenticated network packet can be used to reset the expected origin timestamp for target peers. Legitimate replies from targeted peers will fail the origin timestamp check (TEST2) causing the reply to be dropped and creating a denial of service condition.
Systems with microprocessors utilizing speculative execution and speculative execution of memory reads before the addresses of all prior memory writes are known may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis, aka Speculative Store Bypass (SSB), Variant 4.
A vulnerability has been identified in SIMATIC S7-400 (incl. F) CPU hardware version 4.0 and below (All versions), SIMATIC S7-400 (incl. F) CPU hardware version 5.0 (All firmware versions < V5.2), SIMATIC S7-400H CPU hardware version 4.5 and below (All versions). The affected CPUs improperly validate S7 communication packets which could cause a Denial-of-Service condition of the CPU. The CPU will remain in DEFECT mode until manual restart.
The Milestone XProtect Video Management Software (Corporate, Expert, Professional+, Express+, Essential+) 2016 R1 (10.0.a) to 2018 R1 (12.1a) contains .NET Remoting endpoints that are vulnerable to deserialization attacks resulting in remote code execution.
A vulnerability has been identified in OpenPCS 7 V7.1 and earlier (All versions), OpenPCS 7 V8.0 (All versions), OpenPCS 7 V8.1 (All versions < V8.1 Upd5), OpenPCS 7 V8.2 (All versions), OpenPCS 7 V9.0 (All versions < V9.0 Upd1), SIMATIC BATCH V7.1 and earlier (All versions), SIMATIC BATCH V8.0 (All versions < V8.0 SP1 Upd21), SIMATIC BATCH V8.1 (All versions < V8.1 SP1 Upd16), SIMATIC BATCH V8.2 (All versions < V8.2 Upd10), SIMATIC BATCH V9.0 (All versions < V9.0 SP1), SIMATIC NET PC Software V14 (All versions < V14 SP1 Update 14), SIMATIC NET PC Software V15 (All versions < 15 SP1), SIMATIC PCS 7 V7.1 and earlier (All versions), SIMATIC PCS 7 V8.0 (All versions), SIMATIC PCS 7 V8.1 (All versions), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1), SIMATIC PCS 7 V9.0 (All versions < V9.0 SP1), SIMATIC Route Control V7.1 and earlier (All versions), SIMATIC Route Control V8.0 (All versions), SIMATIC Route Control V8.1 (All versions), SIMATIC Route Control V8.2 (All versions), SIMATIC Route Control V9.0 (All versions < V9.0 Upd1), SIMATIC WinCC Runtime Professional V13 (All versions < V13 SP2 Upd2), SIMATIC WinCC Runtime Professional V14 (All versions < V14 SP1 Upd5), SIMATIC WinCC V7.2 and earlier (All versions < WinCC 7.2 Upd 15), SIMATIC WinCC V7.3 (All versions < WinCC 7.3 Upd 16), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Upd 4), SPPA-T3000 Application Server (All versions < Service Pack R8.2 SP2). Specially crafted messages sent to the RPC service of the affected products could cause a Denial-of-Service condition on the remote and local communication functionality of the affected products. A reboot of the system is required to recover the remote and local communication functionality. Please note that an attacker needs to have network access to the Application Server in order to exploit this vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC WinCC OA Operator iOS App (All versions < V1.4). Insufficient protection of sensitive information (e.g. session key for accessing server) in Siemens WinCC OA Operator iOS app could allow an attacker with physical access to the mobile device to read unencrypted data from the app's directory. Siemens provides mitigations to resolve the security issue.
A vulnerability has been identified in TIM 1531 IRC (All versions < V1.1). A remote attacker with network access to port 80/tcp or port 443/tcp could perform administrative operations on the device without prior authentication. Successful exploitation could allow to cause a denial-of-service, or read and manipulate data as well as configuration settings of the affected device. At the stage of publishing this security advisory no public exploitation is known. Siemens provides mitigations to resolve it.
A vulnerability has been identified in SIMATIC WinCC OA UI for Android (All versions < V3.15.10), SIMATIC WinCC OA UI for iOS (All versions < V3.15.10). Insufficient limitation of CONTROL script capabilities could allow read and write access from one HMI project cache folder to other HMI project cache folders within the app's sandbox on the same mobile device. This includes HMI project cache folders of other configured WinCC OA servers. The security vulnerability could be exploited by an attacker who tricks an app user to connect to an attacker-controlled WinCC OA server. Successful exploitation requires user interaction and read/write access to the app's folder on a mobile device. The vulnerability could allow reading data from and writing data to the app's folder. At the time of advisory publication no public exploitation of this security vulnerability was known. Siemens confirms the security vulnerability and provides mitigations to resolve the security issue.
A vulnerability has been identified in SIMATIC S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 414F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), SIMATIC S7-400 CPU 416F-3 PN/DP V7 (All versions < V7.0.3), SIMATIC CP 343-1 (incl. SIPLUS variants) (All versions), SIMATIC CP 343-1 Advanced (incl. SIPLUS variants) (All versions), SIMATIC CP 443-1 (All versions < V3.3), SIMATIC CP 443-1 (All versions < V3.3), SIMATIC CP 443-1 Advanced (All versions < V3.3), SIMATIC ET 200pro IM154-8 PN/DP CPU (All versions < V3.2.16), SIMATIC ET 200pro IM154-8F PN/DP CPU (All versions < V3.2.16), SIMATIC ET 200pro IM154-8FX PN/DP CPU (All versions < V3.2.16), SIMATIC ET 200S IM151-8 PN/DP CPU (All versions < V3.2.16), SIMATIC ET 200S IM151-8F PN/DP CPU (All versions < V3.2.16), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions < V1.7.0), SIMATIC S7-1500 Software Controller (All versions < V1.7.0), SIMATIC S7-300 CPU 314C-2 PN/DP (All versions < V3.3.16), SIMATIC S7-300 CPU 315-2 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 315F-2 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 315T-3 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 317-2 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 317F-2 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 317T-3 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 317TF-3 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 319-3 PN/DP (All versions < V3.2.16), SIMATIC S7-300 CPU 319F-3 PN/DP (All versions < V3.2.16), SIMATIC S7-400 CPU 412-2 PN V7 (All versions < V7.0.3), SIMATIC S7-400 H V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.9), SIMATIC S7-400 PN/DP V6 CPU family (incl. SIPLUS variants) (All versions < V6.0.7), SIMATIC S7-410 CPU family (incl. SIPLUS variants) (All versions < V8.1), SIMATIC WinAC RTX 2010 (All versions < V2010 SP3), SIMATIC WinAC RTX F 2010 (All versions < V2010 SP3), SINUMERIK 828D (All versions < V4.7 SP6 HF1), SIPLUS ET 200S IM151-8 PN/DP CPU (All versions < V3.2.16), SIPLUS ET 200S IM151-8F PN/DP CPU (All versions < V3.2.16), SIPLUS NET CP 443-1 (All versions < V3.3), SIPLUS NET CP 443-1 Advanced (All versions < V3.3), SIPLUS S7-300 CPU 314C-2 PN/DP (All versions < V3.3.16), SIPLUS S7-300 CPU 315-2 PN/DP (All versions < V3.2.16), SIPLUS S7-300 CPU 315F-2 PN/DP (All versions < V3.2.16), SIPLUS S7-300 CPU 317-2 PN/DP (All versions < V3.2.16), SIPLUS S7-300 CPU 317F-2 PN/DP (All versions < V3.2.16), SIPLUS S7-400 CPU 414-3 PN/DP V7 (All versions < V7.0.3), SIPLUS S7-400 CPU 416-3 PN/DP V7 (All versions < V7.0.3), Softnet PROFINET IO for PC-based Windows systems (All versions). Responding to a PROFINET DCP request with a specially crafted PROFINET DCP packet could cause a denial of service condition of the requesting system. The security vulnerability could be exploited by an attacker located on the same Ethernet segment (OSI Layer 2) as the targeted device. A manual restart is required to recover the system.
A vulnerability has been identified in DIGSI 4 (All versions < V4.92), EN100 Ethernet module DNP3 variant (All versions < V1.05.00), EN100 Ethernet module IEC 104 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.30), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). The device engineering mechanism allows an unauthenticated remote user to upload a modified device configuration overwriting access authorization passwords.
A vulnerability has been identified in DIGSI 4 (All versions < V4.92), EN100 Ethernet module DNP3 variant (All versions < V1.05.00), EN100 Ethernet module IEC 104 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.30), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions), Other SIPROTEC 4 relays (All versions), Other SIPROTEC Compact relays (All versions), SIPROTEC 4 7SD80 (All versions < V4.70), SIPROTEC 4 7SJ61 (All versions < V4.96), SIPROTEC 4 7SJ62 (All versions < V4.96), SIPROTEC 4 7SJ64 (All versions < V4.96), SIPROTEC 4 7SJ66 (All versions < V4.30), SIPROTEC Compact 7SJ80 (All versions < V4.77), SIPROTEC Compact 7SK80 (All versions < V4.77). An attacker with local access to the engineering system or in a privileged network position and able to obtain certain network traffic could possibly reconstruct access authorization passwords.
A vulnerability has been identified in EN100 Ethernet module IEC 61850 variant (All versions < V4.30), EN100 Ethernet module DNP3 variant (All versions < V1.04), EN100 Ethernet module PROFINET IO variant (All versions), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module IEC 104 variant (All versions < V1.22). The web interface (TCP/80) of affected devices allows an unauthenticated user to upgrade or downgrade the firmware of the device, including to older versions with known vulnerabilities.
The Quagga BGP daemon (bgpd) prior to version 1.2.3 has a bug in its parsing of "Capabilities" in BGP OPEN messages, in the bgp_packet.c:bgp_capability_msg_parse function. The parser can enter an infinite loop on invalid capabilities if a Multi-Protocol capability does not have a recognized AFI/SAFI, causing a denial of service.
The Quagga BGP daemon (bgpd) prior to version 1.2.3 can overrun internal BGP code-to-string conversion tables used for debug by 1 pointer value, based on input.
The Quagga BGP daemon (bgpd) prior to version 1.2.3 can double-free memory when processing certain forms of UPDATE message, containing cluster-list and/or unknown attributes. A successful attack could cause a denial of service or potentially allow an attacker to execute arbitrary code.
A vulnerability has been identified in TeleControl Server Basic < V3.1. An attacker with access to the TeleControl Server Basic's webserver (port 80/tcp or 443/tcp) could cause a Denial-of-Service condition on the web server. The remaining functionality of the TeleControl Server Basic is not affected by the Denial-of-Service condition.
A vulnerability has been identified in TeleControl Server Basic < V3.1. An authenticated attacker with a low-privileged account to the TeleControl Server Basic's port 8000/tcp could escalate his privileges and perform administrative operations.
A vulnerability has been identified in TeleControl Server Basic < V3.1. An attacker with network access to the TeleControl Server Basic's port 8000/tcp could bypass the authentication mechanism and read limited information.
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis.
Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis.
Specially crafted packets sent to port 161/udp could cause a denial of service condition. The affected devices must be restarted manually.
Siemens LOGO! Soft Comfort (All versions before V8.2) lacks integrity verification of software packages downloaded via an unprotected communication channel. This could allow a remote attacker to manipulate the software package while performing a Man-in-the-Middle (MitM) attack.
A vulnerability has been identified in RUGGEDCOM ROS for RSL910 devices (All versions < ROS V5.0.1), RUGGEDCOM ROS for all other devices (All versions < ROS V4.3.4), SCALANCE XB-200/XC-200/XP-200/XR300-WG (All versions between V3.0 (including) and V3.0.2 (excluding)), SCALANCE XR-500/XM-400 (All versions between V6.1 (including) and V6.1.1 (excluding)). After initial configuration, the Ruggedcom Discovery Protocol (RCDP) is still able to writeto the device under certain conditions, potentially allowing users located in the adjacentnetwork of the targeted device to perform unauthorized administrative actions.
wolfSSL prior to version 3.12.2 provides a weak Bleichenbacher oracle when any TLS cipher suite using RSA key exchange is negotiated. An attacker can recover the private key from a vulnerable wolfSSL application. This vulnerability is referred to as "ROBOT."
Buffer overflow in Active Management Technology (AMT) in Intel Manageability Engine Firmware 8.x/9.x/10.x/11.0/11.5/11.6/11.7/11.10/11.20 allows attacker with remote Admin access to the system to execute arbitrary code with AMT execution privilege.
Multiple buffer overflows in Active Management Technology (AMT) in Intel Manageability Engine Firmware 8.x/9.x/10.x/11.0/11.5/11.6/11.7/11.10/11.20 allow attacker with local access to the system to execute arbitrary code with AMT execution privilege.
An issue was discovered on Siemens SICAM RTUs SM-2556 COM Modules with the firmware variants ENOS00, ERAC00, ETA2, ETLS00, MODi00, and DNPi00. The integrated web server (port 80/tcp) of the affected devices could allow unauthenticated remote attackers to execute arbitrary code on the affected device.
An issue was discovered on Siemens SICAM RTUs SM-2556 COM Modules with the firmware variants ENOS00, ERAC00, ETA2, ETLS00, MODi00, and DNPi00. The integrated web server (port 80/tcp) of the affected devices could allow Cross-Site Scripting (XSS) attacks if unsuspecting users are tricked into clicking on a malicious link.
An issue was discovered on Siemens SICAM RTUs SM-2556 COM Modules with the firmware variants ENOS00, ERAC00, ETA2, ETLS00, MODi00, and DNPi00. The integrated web server (port 80/tcp) of the affected devices could allow unauthenticated remote attackers to obtain sensitive device information over the network.
An Improper Input Validation issue was discovered in Siemens SIMATIC PCS 7 V8.1 prior to V8.1 SP1 with WinCC V7.3 Upd 13, and V8.2 all versions. The improper input validation vulnerability has been identified, which may allow an authenticated remote attacker who is a member of the administrators group to crash services by sending specially crafted messages to the DCOM interface.
A vulnerability has been identified in Siemens APOGEE PXC and TALON TC BACnet Automation Controllers in all versions <V3.5. A directory traversal vulnerability could allow a remote attacker with network access to the integrated web server (80/tcp and 443/tcp) to obtain information on the structure of the file system of the affected devices.
A vulnerability has been identified in Siemens APOGEE PXC and TALON TC BACnet Automation Controllers in all versions <V3.5. An attacker with network access to the integrated web server (80/tcp and 443/tcp) could bypass the authentication and download sensitive information from the device.
Heap-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DNS response.
In the Siemens 7KM PAC Switched Ethernet PROFINET expansion module (All versions < V2.1.3), a Denial-of-Service condition could be induced by a specially crafted PROFINET DCP packet sent as a local Ethernet (Layer 2) broadcast. The affected component requires a manual restart via the main device to recover.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V8.3). An attacker who performs a Man-in-the-Middle attack between the LOGO! BM and other devices could potentially decrypt and modify network traffic.
A vulnerability has been identified in LOGO! 8 BM (incl. SIPLUS variants) (All versions < V1.81.2). An attacker with network access to the integrated web server on port 80/tcp could obtain the session ID of an active user session. A user must be logged in to the web interface. Siemens recommends to use the integrated webserver on port 80/tcp only in trusted networks.
An XXE vulnerability has been identified in OPC Foundation UA .NET Sample Code before 2017-03-21 and Local Discovery Server (LDS) before 1.03.367. Among the affected products are Siemens SIMATIC PCS7 (All versions V8.1 and earlier), SIMATIC WinCC (All versions < V7.4 SP1), SIMATIC WinCC Runtime Professional (All versions < V14 SP1), SIMATIC NET PC Software, and SIMATIC IT Production Suite. By sending specially crafted packets to the OPC Discovery Server at port 4840/tcp, an attacker might cause the system to access various resources chosen by the attacker.
A vulnerability was discovered in Siemens OZW672 (all versions) and OZW772 (all versions) that could allow an attacker to read and manipulate data in TLS sessions while performing a man-in-the-middle (MITM) attack on the integrated web server on port 443/tcp.
A vulnerability was discovered in Siemens OZW672 (all versions) and OZW772 (all versions) that could allow an attacker with access to port 21/tcp to access or alter historical measurement data stored on the device.
A vulnerability was discovered in Siemens SIMATIC WinCC Sm@rtClient for Android (All versions before V1.0.2.2) and SIMATIC WinCC Sm@rtClient for Android Lite (All versions before V1.0.2.2). An attacker with physical access to an unlocked mobile device, that has the affected app running, could bypass the app's authentication mechanism under certain conditions.
A vulnerability was discovered in Siemens SIMATIC WinCC Sm@rtClient for Android (All versions before V1.0.2.2). The existing TLS protocol implementation could allow an attacker to read and modify data within a TLS session while performing a Man-in-the-Middle (MitM) attack.
A vulnerability was discovered in Siemens ViewPort for Web Office Portal before revision number 1453 that could allow an unauthenticated remote user to upload arbitrary code and execute it with the permissions of the operating-system user running the web server by sending specially crafted network packets to port 443/TCP or port 80/TCP.
A vulnerability was discovered in Siemens XHQ server 4 and 5 (4 before V4.7.1.3 and 5 before V5.0.0.2) that could allow an authenticated low-privileged remote user to gain read access to data in the XHQ solution exceeding his configured permission level.
The decodenetnum function in ntpd in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (assertion failure) via a 6 or mode 7 packet containing a long data value.
The rate limiting feature in NTP 4.x before 4.2.8p4 and 4.3.x before 4.3.77 allows remote attackers to have unspecified impact via a large number of crafted requests.
The ULOGTOD function in ntp.d in SNTP before 4.2.7p366 does not properly perform type conversions from a precision value to a double, which allows remote attackers to cause a denial of service (infinite loop) via a crafted NTP packet.
An Improper Authentication issue was discovered in Siemens SIMATIC CP 44x-1 RNA, all versions prior to 1.4.1. An unauthenticated remote attacker may be able to perform administrative actions on the Communication Process (CP) of the RNA series module, if network access to Port 102/TCP is available and the configuration file for the CP is stored on the RNA's CPU.
A vulnerability was discovered in Siemens SIMATIC WinCC (V7.3 before Upd 11 and V7.4 before SP1), SIMATIC WinCC Runtime Professional (V13 before SP2 and V14 before SP1), SIMATIC WinCC (TIA Portal) Professional (V13 before SP2 and V14 before SP1) that could allow an authenticated, remote attacker who is member of the "administrators" group to crash services by sending specially crafted messages to the DCOM interface.
A vulnerability has been identified in Primary Setup Tool (PST) (All versions < V4.2 HF1), SIMATIC Automation Tool (All versions < V3.0), SIMATIC NET PC-Software (All versions < V14 SP1), SIMATIC PCS 7 V8.1 (All versions), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1), SIMATIC STEP 7 (TIA Portal) V13 (All versions < V13 SP2), SIMATIC STEP 7 (TIA Portal) V14 (All versions < V14 SP1), SIMATIC STEP 7 V5.X (All versions < V5.6), SIMATIC WinAC RTX 2010 SP2 (All versions), SIMATIC WinAC RTX F 2010 SP2 (All versions), SIMATIC WinCC (TIA Portal) V13 (All versions < V13 SP2), SIMATIC WinCC (TIA Portal) V14 (All versions < V14 SP1), SIMATIC WinCC V7.2 and prior (All versions), SIMATIC WinCC V7.3 (All versions < V7.3 Update 15), SIMATIC WinCC V7.4 (All versions < V7.4 SP1 Upd1), SIMATIC WinCC flexible 2008 (All versions < flexible 2008 SP5), SINAUT ST7CC (All versions installed in conjunction with SIMATIC WinCC < V7.3 Update 15), SINEMA Server (All versions < V14), SINUMERIK 808D Programming Tool (All versions < V4.7 SP4 HF2), SMART PC Access (All versions < V2.3), STEP 7 - Micro/WIN SMART (All versions < V2.3), Security Configuration Tool (SCT) (All versions < V5.0). Specially crafted PROFINET DCP broadcast packets sent to the affected products on a local Ethernet segment (Layer 2) could cause a Denial-of-Service condition of some services. The services require manual restart to recover.
Specially crafted PROFINET DCP packets sent on a local Ethernet segment (Layer 2) to an affected product could cause a denial of service condition of that product. Human interaction is required to recover the system. PROFIBUS interfaces are not affected.
Specially crafted PROFINET DCP broadcast packets could cause a denial of service condition of affected products on a local Ethernet segment (Layer 2). Human interaction is required to recover the systems. PROFIBUS interfaces are not affected.
The integrated web server in Siemens RUGGEDCOM ROX I (all versions) at port 10000/TCP could allow an authenticated user to perform stored Cross-Site Scripting attacks.
Siemens RUGGEDCOM ROX I (all versions) allow an authenticated user to bypass access restrictions in the web interface at port 10000/TCP to obtain privileged file system access or change configuration settings.
The integrated web server in Siemens RUGGEDCOM ROX I (all versions) at port 10000/TCP could allow remote attackers to perform actions with the privileges of an authenticated user, provided the targeted user has an active session and is induced into clicking on a malicious link or into visiting a malicious website, aka CSRF.
Siemens RUGGEDCOM ROX I (all versions) contain a vulnerability in the integrated web server at port 10000/TCP which is prone to reflected Cross-Site Scripting attacks if an unsuspecting user is induced to click on a malicious link.
Siemens RUGGEDCOM ROX I (all versions) contain a vulnerability that could allow an authenticated user to read arbitrary files through the web interface at port 10000/TCP and access sensitive information.
Multiple buffer overflows in the ctl_put* functions in NTP before 4.2.8p10 and 4.3.x before 4.3.94 allow remote authenticated users to have unspecified impact via a long variable.
The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote attackers to execute arbitrary code via crafted packets, aka "Windows SMB Remote Code Execution Vulnerability." This vulnerability is different from those described in CVE-2017-0143, CVE-2017-0144, CVE-2017-0145, and CVE-2017-0146.
The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote attackers to obtain sensitive information from process memory via a crafted packets, aka "Windows SMB Information Disclosure Vulnerability."
The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote attackers to execute arbitrary code via crafted packets, aka "Windows SMB Remote Code Execution Vulnerability." This vulnerability is different from those described in CVE-2017-0143, CVE-2017-0144, CVE-2017-0145, and CVE-2017-0148.
The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote attackers to execute arbitrary code via crafted packets, aka "Windows SMB Remote Code Execution Vulnerability." This vulnerability is different from those described in CVE-2017-0143, CVE-2017-0144, CVE-2017-0146, and CVE-2017-0148.
The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote attackers to execute arbitrary code via crafted packets, aka "Windows SMB Remote Code Execution Vulnerability." This vulnerability is different from those described in CVE-2017-0143, CVE-2017-0145, CVE-2017-0146, and CVE-2017-0148.
The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2 and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote attackers to execute arbitrary code via crafted packets, aka "Windows SMB Remote Code Execution Vulnerability." This vulnerability is different from those described in CVE-2017-0144, CVE-2017-0145, CVE-2017-0146, and CVE-2017-0148.
Siemens SINUMERIK Integrate Operate Clients between 2.0.3.00.016 (including) and 2.0.6 (excluding) and between 3.0.4.00.032 (including) and 3.0.6 (excluding) contain a vulnerability that could allow an attacker to read and manipulate data in TLS sessions while performing a man-in-the-middle (MITM) attack.
A non-privileged user of the Siemens web application RUGGEDCOM NMS < V1.2 on port 8080/TCP and 8081/TCP could perform a persistent Cross-Site Scripting (XSS) attack, potentially resulting in obtaining administrative permissions.
The Siemens web application RUGGEDCOM NMS < V1.2 on port 8080/TCP and 8081/TCP could allow a remote attacker to perform a Cross-Site Request Forgery (CSRF) attack, potentially allowing an attacker to execute administrative operations, provided the targeted user has an active session and is induced to trigger a malicious request.
An issue was discovered in Siemens SICAM PAS before 8.00. A factory account with hard-coded passwords is present in the SICAM PAS installations. Attackers might gain privileged access to the database over Port 2638/TCP.
An issue was discovered in Siemens SICAM PAS before 8.00. Because of Storing Passwords in a Recoverable Format, an authenticated local attacker with certain privileges could possibly reconstruct the passwords of users for accessing the database.
An issue was discovered in Siemens ETA4 firmware (all versions prior to Revision 08) of the SM-2558 extension module for: SICAM AK, SICAM TM 1703, SICAM BC 1703, and SICAM AK 3. Specially crafted packets sent to Port 2404/TCP could cause the affected device to go into defect mode. A cold start might be required to recover the system, a Denial-of-Service Vulnerability.
The MATCH_ASSOC function in NTP before version 4.2.8p9 and 4.3.x before 4.3.92 allows remote attackers to cause an out-of-bounds reference via an addpeer request with a large hmode value.
ntpd in NTP before 4.2.8p6 and 4.3.x before 4.3.90 allows remote attackers to cause a denial of service (NULL pointer dereference) via a ntpdc reslist command.
NTP before 4.2.8p6 and 4.3.x before 4.3.90, when configured in broadcast mode, allows man-in-the-middle attackers to conduct replay attacks by sniffing the network.
A vulnerability in SIEMENS SIMATIC WinCC (All versions < SIMATIC WinCC V7.2) and SIEMENS SIMATIC PCS 7 (All versions < SIMATIC PCS 7 V8.0 SP1) could allow a remote attacker to crash an ActiveX component or leak parts of the application memory if a user is tricked into clicking on a malicious link under certain conditions.
A vulnerability has been identified in SIMATIC S7-300 CPU family (All versions), SIMATIC S7-300 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP V7 CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 V6 and earlier CPU family (All versions), SIMATIC S7-400 V7 CPU family (All versions), SIMATIC S7-410 V8 CPU family (All versions), SIMATIC S7-410 V8 CPU family (incl. SIPLUS variants) (All versions). An attacker with network access to port 102/tcp (ISO-TSAP) or via Profibus could obtain credentials from the PLC if protection-level 2 is configured on the affected devices.
A vulnerability has been identified in SIMATIC S7-300 CPU family (All versions), SIMATIC S7-300 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP V6 and below CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP V7 CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 V6 and earlier CPU family (All versions), SIMATIC S7-400 V7 CPU family (All versions). Specially crafted packets sent to port 80/tcp could cause the affected devices to go into defect mode. A cold restart is required to recover the system.
A vulnerability in Siemens SICAM PAS (all versions before V8.09) could allow a remote attacker to cause a Denial of Service condition and potentially lead to unauthenticated remote code execution by sending specially crafted packets to port 19234/TCP.
A vulnerability in Siemens SICAM PAS (all versions before V8.09) could allow a remote attacker to upload, download, or delete files in certain parts of the file system by sending specially crafted packets to port 19235/TCP.
A vulnerability has been identified in SIMATIC CP 343-1 Advanced (incl. SIPLUS NET variant) (All versions < V3.0.53), SIMATIC CP 443-1 Advanced (incl. SIPLUS NET variant) (All versions < V3.2.17), SIMATIC S7-300 PN/DP CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP CPU family (incl. SIPLUS variants) (All versions). The integrated web server at port 80/TCP or port 443/TCP of the affected devices could allow remote attackers to perform actions with the permissions of an authenticated user, provided the targeted user has an active session and is induced to trigger the malicious request.
A vulnerability has been identified in SIMATIC CP 343-1 Advanced (incl. SIPLUS NET variant) (All versions < V3.0.53), SIMATIC CP 443-1 Advanced (incl. SIPLUS NET variant) (All versions < V3.2.17), SIMATIC S7-300 PN/DP CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-400 PN/DP CPU family (incl. SIPLUS variants) (All versions). The integrated web server delivers cookies without the "secure" flag. Modern browsers interpreting the flag would mitigate potential data leakage in case of clear text transmission.
The following SIEMENS branded IP Camera Models CCMW3025, CVMW3025-IR, CFMW3025 prior to version 1.41_SP18_S1; CCPW3025, CCPW5025 prior to version 0.1.73_S1; CCMD3025-DN18 prior to version v1.394_S1; CCID1445-DN18, CCID1445-DN28, CCID1145-DN36, CFIS1425, CCIS1425, CFMS2025, CCMS2025, CVMS2025-IR, CFMW1025, CCMW1025 prior to version v2635_SP1 could allow an attacker with network access to the web server to obtain administrative credentials under certain circumstances.
A vulnerability has been identified in SIMATIC CP 1543-1 (All versions < V2.0.28), SIPLUS NET CP 1543-1 (All versions < V2.0.28). Under special conditions it was possible to write SNMP variables on port 161/udp which should be read-only and should only be configured with TIA-Portal. A write to these variables could reduce the availability or cause a denial-of-service.
A vulnerability has been identified in SIMATIC CP 1543-1 (All versions < V2.0.28), SIPLUS NET CP 1543-1 (All versions < V2.0.28). Users with elevated privileges to TIA-Portal and project data on the engineering station could possibly get privileged access on affected devices.
A vulnerability has been identified in Primary Setup Tool (PST) (All versions < V4.2 HF1), SIMATIC IT Production Suite (All versions < V7.0 SP1 HFX 2), SIMATIC NET PC-Software (All versions < V14), SIMATIC PCS 7 V7.1 (All versions), SIMATIC PCS 7 V8.0 (All versions), SIMATIC PCS 7 V8.1 (All versions), SIMATIC PCS 7 V8.2 (All versions < V8.2 SP1), SIMATIC STEP 7 (TIA Portal) V13 (All versions < V13 SP2), SIMATIC STEP 7 V5.X (All versions < V5.5 SP4 HF11), SIMATIC WinCC (TIA Portal) Basic, Comfort, Advanced (All versions < V14), SIMATIC WinCC (TIA Portal) Professional V13 (All versions < V13 SP2), SIMATIC WinCC (TIA Portal) Professional V14 (All versions < V14 SP1), SIMATIC WinCC Runtime Professional V13 (All versions < V13 SP2), SIMATIC WinCC Runtime Professional V14 (All versions < V14 SP1), SIMATIC WinCC V7.0 SP2 and earlier versions (All versions < V7.0 SP2 Upd 12), SIMATIC WinCC V7.0 SP3 (All versions < V7.0 SP3 Upd 8), SIMATIC WinCC V7.2 (All versions < V7.2 Upd 14), SIMATIC WinCC V7.3 (All versions < V7.3 Upd 11), SIMATIC WinCC V7.4 (All versions < V7.4 SP1), SIMIT V9.0 (All versions < V9.0 SP1), SINEMA Remote Connect Client (All versions < V1.0 SP3), SINEMA Server (All versions < V13 SP2), SOFTNET Security Client V5.0 (All versions), Security Configuration Tool (SCT) (All versions < V4.3 HF1), TeleControl Server Basic (All versions < V3.0 SP2), WinAC RTX 2010 SP2 (All versions), WinAC RTX F 2010 SP2 (All versions). Unquoted service paths could allow local Microsoft Windows operating system users to escalate their privileges if the affected products are not installed under their default path ("C:\Program Files\*" or the localized equivalent).
Siemens Automation License Manager (ALM) before 5.3 SP3 allows remote attackers to write to files, rename files, create directories, or delete directories via crafted packets.
SQL injection vulnerability in Siemens Automation License Manager (ALM) before 5.3 SP3 Update 1 allows remote attackers to execute arbitrary SQL commands via crafted traffic to TCP port 4410.
Siemens Automation License Manager (ALM) before 5.3 SP3 Update 1 allows remote attackers to cause a denial of service (ALM service outage) via crafted packets to TCP port 4410.
Siemens SIMATIC STEP 7 (TIA Portal) before 14 uses an improper format for managing TIA project files during version updates, which makes it easier for local users to obtain sensitive configuration information via unspecified vectors.
Siemens SIMATIC STEP 7 (TIA Portal) before 14 improperly stores pre-shared key data in TIA project files, which makes it easier for local users to obtain sensitive information by leveraging access to a file and conducting a brute-force attack.
The integrated web server on Siemens SCALANCE M-800 and S615 modules with firmware before 4.02 does not set the secure flag for the session cookie in an https session, which makes it easier for remote attackers to capture this cookie by intercepting its transmission within an http session.
A vulnerability has been identified in Firmware variant PROFINET IO for EN100 Ethernet module : All versions < V1.04.01; Firmware variant Modbus TCP for EN100 Ethernet module : All versions < V1.11.00; Firmware variant DNP3 TCP for EN100 Ethernet module : All versions < V1.03; Firmware variant IEC 104 for EN100 Ethernet module : All versions < V1.21; EN100 Ethernet module included in SIPROTEC Merging Unit 6MU80 : All versions < 1.02.02; SIPROTEC 7SJ686 : All versions < V 4.87; SIPROTEC 7UT686 : All versions < V 4.02; SIPROTEC 7SD686 : All versions < V 4.05; SIPROTEC 7SJ66 : All versions < V 4.30. Attackers with network access to the device's web interface (port 80/tcp) could possibly circumvent authentication and perform certain administrative operations. A legitimate user must be logged into the web interface for the attack to be successful.
A vulnerability has been identified in Firmware variant PROFINET IO for EN100 Ethernet module : All versions < V1.04.01; Firmware variant Modbus TCP for EN100 Ethernet module : All versions < V1.11.00; Firmware variant DNP3 TCP for EN100 Ethernet module : All versions < V1.03; Firmware variant IEC 104 for EN100 Ethernet module : All versions < V1.21; EN100 Ethernet module included in SIPROTEC Merging Unit 6MU80 : All versions < 1.02.02. Specially crafted packets sent to port 80/tcp could cause the affected device to go into defect mode.
Siemens SINEMA Server uses weak permissions for the application folder, which allows local users to gain privileges via unspecified vectors.
Cross-site scripting (XSS) vulnerability in the integrated web server in Siemens SINEMA Remote Connect Server before 1.2 allows remote attackers to inject arbitrary web script or HTML via a crafted URL.
Siemens SIMATIC NET PC-Software before 13 SP2 allows remote attackers to cause a denial of service (OPC UA service outage) via crafted TCP packets.
Siemens SIMATIC WinCC 7.0 through SP3 and 7.2 allows remote attackers to read arbitrary WinCC station files via crafted packets.
Siemens SIMATIC WinCC before 7.3 Update 10 and 7.4 before Update 1, SIMATIC BATCH before 8.1 SP1 Update 9 as distributed in SIMATIC PCS 7 through 8.1 SP1, SIMATIC OpenPCS 7 before 8.1 Update 3 as distributed in SIMATIC PCS 7 through 8.1 SP1, SIMATIC OpenPCS 7 before 8.2 Update 1 as distributed in SIMATIC PCS 7 8.2, and SIMATIC WinCC Runtime Professional before 13 SP1 Update 9 allow remote attackers to execute arbitrary code via crafted packets.
ntpd in NTP 4.x before 4.2.8p8 allows remote attackers to cause a denial of service (interleaved-mode transition and time change) via a spoofed broadcast packet. NOTE: this vulnerability exists because of an incomplete fix for CVE-2016-1548.
ntpd in NTP 4.x before 4.2.8p8, when autokey is enabled, allows remote attackers to cause a denial of service (peer-variable clearing and association outage) by sending (1) a spoofed crypto-NAK packet or (2) a packet with an incorrect MAC value at a certain time.
The process_packet function in ntp_proto.c in ntpd in NTP 4.x before 4.2.8p8 allows remote attackers to cause a denial of service (peer-variable modification) by sending spoofed packets from many source IP addresses in a certain scenario, as demonstrated by triggering an incorrect leap indication.
ntpd in NTP 4.x before 4.2.8p8 allows remote attackers to cause a denial of service (ephemeral-association demobilization) by sending a spoofed crypto-NAK packet with incorrect authentication data at a certain time.
Siemens SICAM PAS through 8.07 allows local users to obtain sensitive configuration information by leveraging database stoppage.
Siemens SICAM PAS before 8.07 does not properly restrict password data in the database, which makes it easier for local users to calculate passwords by leveraging unspecified database privileges.
Siemens SIMATIC S7-300 Profinet-enabled CPU devices with firmware before 3.2.12 and SIMATIC S7-300 Profinet-disabled CPU devices with firmware before 3.3.12 allow remote attackers to cause a denial of service (defect-mode transition) via crafted (1) ISO-TSAP or (2) Profibus packets.
A vulnerability has been identified in Firmware variant PROFINET IO for EN100 Ethernet module : All versions < V1.04.01; Firmware variant Modbus TCP for EN100 Ethernet module : All versions < V1.11.00; Firmware variant DNP3 TCP for EN100 Ethernet module : All versions < V1.03; Firmware variant IEC 104 for EN100 Ethernet module : All versions < V1.21; EN100 Ethernet module included in SIPROTEC Merging Unit 6MU80 : All versions < 1.02.02. The integrated web server (port 80/tcp) of the affected devices could allow remote attackers to obtain a limited amount of device memory content if network access was obtained. This vulnerability only affects EN100 Ethernet module included in SIPROTEC4 and SIPROTEC Compact devices.
A vulnerability has been identified in firmware variant PROFINET IO for EN100 Ethernet module : All versions < V1.04.01; Firmware variant Modbus TCP for EN100 Ethernet module : All versions < V1.11.00; Firmware variant DNP3 TCP for EN100 Ethernet module : All versions < V1.03; Firmware variant IEC 104 for EN100 Ethernet module : All versions < V1.21; EN100 Ethernet module included in SIPROTEC Merging Unit 6MU80 : All versions < 1.02.02; SIPROTEC 7SJ686 : All versions < V 4.83; SIPROTEC 7UT686 : All versions < V 4.01; SIPROTEC 7SD686 : All versions < V 4.03; SIPROTEC 7SJ66 : All versions < V 4.20. The integrated web server (port 80/tcp) of the affected devices could allow remote attackers to obtain sensitive device information if network access was obtained.
Siemens SCALANCE S613 allows remote attackers to cause a denial of service (web-server outage) via traffic to TCP port 443.
Siemens APOGEE Insight uses weak permissions for the application folder, which allows local users to obtain sensitive information or modify data via unspecified vectors.
Siemens SIMATIC S7-1200 CPU devices before 4.0 allow remote attackers to bypass a "user program block" protection mechanism via unspecified vectors.
Siemens SIMATIC S7-1500 CPU devices before 1.8.3 allow remote attackers to bypass a replay protection mechanism via packets on TCP port 102.
Siemens SIMATIC S7-1500 CPU devices before 1.8.3 allow remote attackers to cause a denial of service (STOP mode transition) via crafted packets on TCP port 102.
Cross-site scripting (XSS) vulnerability in the login form in the integrated web server on Siemens OZW OZW672 devices before 6.00 and OZW772 devices before 6.00 allows remote attackers to inject arbitrary web script or HTML via a crafted URL.
NTP 4.x before 4.2.8p6 and 4.3.x before 4.3.90 do not verify peer associations of symmetric keys when authenticating packets, which might allow remote attackers to conduct impersonation attacks via an arbitrary trusted key, aka a "skeleton key."
A vulnerability has been identified in SIMATIC NET CP 342-5 (incl. SIPLUS variants) (All versions), SIMATIC NET CP 343-1 Advanced (incl. SIPLUS variants) (All versions < V3.0.44), SIMATIC NET CP 343-1 Lean (incl. SIPLUS variants) (All versions < V3.1.1), SIMATIC NET CP 343-1 Standard (incl. SIPLUS variants) (All versions < V3.1.1), SIMATIC NET CP 443-1 Advanced (incl. SIPLUS variants) (All versions < V3.2.9), SIMATIC NET CP 443-1 Standard (incl. SIPLUS variants) (All versions < V3.2.9), SIMATIC NET CP 443-5 Basic (incl. SIPLUS variants) (All versions), SIMATIC NET CP 443-5 Extended (All versions), TIM 3V-IE / TIM 3V-IE Advanced (incl. SIPLUS NET variants) (All versions < V2.6.0), TIM 3V-IE DNP3 (incl. SIPLUS NET variants) (All versions < V3.1.0), TIM 4R-IE (incl. SIPLUS NET variants) (All versions < V2.6.0), TIM 4R-IE DNP3 (incl. SIPLUS NET variants) (All versions < V3.1.0). The implemented access protection level enforcement of the affected communication processors (CP) could possibly allow unauthenticated users to perform administrative operations on the CPs if network access (port 102/TCP) is available and the CPs' configuration was stored on their corresponding CPUs.
Siemens RUGGEDCOM ROS before 4.2.1 allows remote attackers to obtain sensitive information by sniffing the network for VLAN data within the padding section of an Ethernet frame.
Siemens RUGGEDCOM ROS 3.8.0 through 4.1.x permanently enables the IP forwarding feature, which allows remote attackers to bypass a VLAN isolation protection mechanism via IP traffic.
The Siemens COMPAS Mobile application before 1.6 for Android does not properly verify X.509 certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers and obtain sensitive information via a crafted certificate.
Cross-site request forgery (CSRF) vulnerability in the web server on Siemens SIMATIC S7-1200 CPU devices with firmware before 4.1.3 allows remote attackers to hijack the authentication of unspecified victims via unknown vectors.
The SSL layer of the HTTPS service in Siemens RuggedCom ROS before 4.2.0 and ROX II does not properly implement CBC padding, which makes it easier for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, a different vulnerability than CVE-2014-3566.
The Siemens SIMATIC WinCC Sm@rtClient and Sm@rtClient Lite applications before 01.00.01.00 for Android do not properly store passwords, which allows physically proximate attackers to obtain sensitive information via unspecified vectors.
A vulnerability has been identified in Firmware variant PROFINET IO for EN100 Ethernet module : All versions < V1.04.01; Firmware variant Modbus TCP for EN100 Ethernet module : All versions < V1.11.00; Firmware variant DNP3 TCP for EN100 Ethernet module : All versions < V1.03; Firmware variant IEC 104 for EN100 Ethernet module : All versions < V1.21; EN100 Ethernet module included in SIPROTEC Merging Unit 6MU80 : All versions < 1.02.02. Specially crafted packets sent to port 50000/UDP could cause a denial-of-service of the affected device. A manual reboot may be required to recover the service of the device.
The Siemens HomeControl for Room Automation application before 2.0.1 for Android does not verify X.509 certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers and obtain sensitive information or modify data via a crafted certificate.
Siemens SIMATIC HMI Basic Panels 2nd Generation before WinCC (TIA Portal) 13 SP1 Upd2, SIMATIC HMI Comfort Panels before WinCC (TIA Portal) 13 SP1 Upd2, SIMATIC WinCC Runtime Advanced before WinCC (TIA Portal) 13 SP1 Upd2, SIMATIC WinCC Runtime Professional before WinCC (TIA Portal) 13 SP1 Upd2, SIMATIC HMI Basic Panels 1st Generation (WinCC TIA Portal), SIMATIC HMI Mobile Panel 277 (WinCC TIA Portal), SIMATIC HMI Multi Panels (WinCC TIA Portal), and SIMATIC WinCC 7.x before 7.3 Upd4 allow remote attackers to complete authentication by leveraging knowledge of a password hash without knowledge of the associated password.
Siemens SIMATIC HMI Comfort Panels before WinCC (TIA Portal) 13 SP1 Upd2 and SIMATIC WinCC Runtime Advanced before WinCC (TIA Portal) 13 SP1 Upd2 allow man-in-the-middle attackers to cause a denial of service via crafted packets on TCP port 102.
Siemens SIMATIC STEP 7 (TIA Portal) 12 and 13 before 13 SP1 Upd1 improperly stores password data within project files, which makes it easier for local users to determine cleartext (1) protection-level passwords or (2) web-server passwords by leveraging the ability to read these files.
Siemens SIMATIC STEP 7 (TIA Portal) 12 and 13 before 13 SP1 Upd1 allows man-in-the-middle attackers to obtain sensitive information or modify transmitted data via unspecified vectors.
Siemens SIMATIC S7-300 CPU devices allow remote attackers to cause a denial of service (defect-mode transition) via crafted packets on (1) TCP port 102 or (2) Profibus.
The Siemens SPCanywhere application for iOS allows physically proximate attackers to bypass intended access restrictions by leveraging a filesystem architectural error.
The Siemens SPCanywhere application for Android does not properly store application passwords, which allows physically proximate attackers to obtain sensitive information by examining the device filesystem.
The Siemens SPCanywhere application for Android does not use encryption during the loading of code, which allows man-in-the-middle attackers to execute arbitrary code by modifying the client-server data stream.
The Siemens SPCanywhere application for Android and iOS does not properly verify X.509 certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers and obtain sensitive information via a crafted certificate.
The Siemens SPCanywhere application for Android and iOS does not use encryption during lookups of system ID to IP address mappings, which allows man-in-the-middle attackers to discover alarm IP addresses and spoof servers by intercepting the client-server data stream.
Untrusted search path vulnerability in Siemens SIMATIC ProSave before 13 SP1; SIMATIC CFC before 8.0 SP4 Upd9 and 8.1 before Upd1; SIMATIC STEP 7 before 5.5 SP1 HF2, 5.5 SP2 before HF7, 5.5 SP3, and 5.5 SP4 before HF4; SIMOTION Scout before 4.4; and STARTER before 4.4 HF3 allows local users to gain privileges via a Trojan horse application file.
Siemens SPC controllers SPC4000, SPC5000, and SPC6000 before 3.6.0 allow remote attackers to cause a denial of service (device restart) via crafted packets.
The remote-management module in the (1) Multi Panels, (2) Comfort Panels, and (3) RT Advanced functionality in Siemens SIMATIC WinCC (TIA Portal) before 13 SP1 and in the (4) panels and (5) runtime functionality in SIMATIC WinCC flexible before 2008 SP3 Up7 does not properly encrypt credentials in transit, which makes it easier for remote attackers to determine cleartext credentials by sniffing the network and conducting a decryption attack.
Siemens SIMATIC STEP 7 (TIA Portal) before 13 SP1 determines a user's privileges on the basis of project-file fields that lack integrity protection, which allows remote attackers to establish arbitrary authorization data via a modified file.
Siemens SIMATIC STEP 7 (TIA Portal) before 13 SP1 uses a weak password-hash algorithm, which makes it easier for local users to determine cleartext passwords by reading a project file and conducting a brute-force attack.
Buffer overflow in the integrated web server on Siemens Ruggedcom WIN51xx devices with firmware before SS4.4.4624.35, WIN52xx devices with firmware before SS4.4.4624.35, WIN70xx devices with firmware before BS4.4.4621.32, and WIN72xx devices with firmware before BS4.4.4621.32 allows remote attackers to execute arbitrary code via unspecified vectors.
The integrated management service on Siemens Ruggedcom WIN51xx devices with firmware before SS4.4.4624.35, WIN52xx devices with firmware before SS4.4.4624.35, WIN70xx devices with firmware before BS4.4.4621.32, and WIN72xx devices with firmware before BS4.4.4621.32 allows remote attackers to bypass authentication and perform administrative actions via unspecified vectors.
Siemens Ruggedcom WIN51xx devices with firmware before SS4.4.4624.35, WIN52xx devices with firmware before SS4.4.4624.35, WIN70xx devices with firmware before BS4.4.4621.32, and WIN72xx devices with firmware before BS4.4.4621.32 allow context-dependent attackers to discover password hashes by reading (1) files or (2) security logs.
The web server on Siemens SCALANCE X-200IRT switches with firmware before 5.2.0 allows remote attackers to hijack sessions via unspecified vectors.
Open redirect vulnerability in the integrated web server on Siemens SIMATIC S7-1200 CPU devices with firmware before 4.1 allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via unspecified vectors.
The FTP server on Siemens SCALANCE X-300 switches with firmware before 4.0 and SCALANCE X 408 switches with firmware before 4.0 allows remote authenticated users to cause a denial of service (reboot) via crafted FTP packets.
The web server on Siemens SCALANCE X-300 switches with firmware before 4.0 and SCALANCE X 408 switches with firmware before 4.0 allows remote attackers to cause a denial of service (reboot) via malformed HTTP requests.
The Siemens SIMATIC WinCC Sm@rtClient app before 1.0.2 for iOS allows physically proximate attackers to discover Sm@rtServer credentials by leveraging an error in the credential-processing mechanism.
The Siemens SIMATIC WinCC Sm@rtClient app before 1.0.2 for iOS allows local users to bypass an intended application-password requirement by leveraging the running of the app in the background state.
The Siemens SIMATIC WinCC Sm@rtClient app before 1.0.2 for iOS allows physically proximate attackers to extract the password from storage via unspecified vectors.
The WinCC server in Siemens SIMATIC WinCC 7.0 through SP3, 7.2 before Update 9, and 7.3 before Update 2; SIMATIC PCS 7 7.1 through SP4, 8.0 through SP2, and 8.1; and TIA Portal 13 before Update 6 allows remote attackers to read arbitrary files via crafted packets.
The WinCC server in Siemens SIMATIC WinCC 7.0 through SP3, 7.2 before Update 9, and 7.3 before Update 2; SIMATIC PCS 7 7.1 through SP4, 8.0 through SP2, and 8.1; and TIA Portal 13 before Update 6 allows remote attackers to execute arbitrary code via crafted packets.
Siemens SIMATIC S7-1500 CPU devices with firmware before 1.6 allow remote attackers to cause a denial of service (device restart and STOP transition) via crafted TCP packets.
The Project administration application in Siemens SIMATIC WinCC before 7.3, as used in PCS7 and other products, has a hardcoded encryption key, which allows remote attackers to obtain sensitive information by extracting this key from another product installation and then employing this key during the sniffing of network traffic on TCP port 1030.
Siemens SIMATIC WinCC before 7.3, as used in PCS7 and other products, allows local users to gain privileges by leveraging weak system-object access control.
The database server in Siemens SIMATIC WinCC before 7.3, as used in PCS7 and other products, allows remote authenticated users to gain privileges via a request to TCP port 1433.
The WebNavigator server in Siemens SIMATIC WinCC before 7.3, as used in PCS7 and other products, allows remote authenticated users to gain privileges via a (1) HTTP or (2) HTTPS request.
The WebNavigator server in Siemens SIMATIC WinCC before 7.3, as used in PCS7 and other products, allows remote attackers to obtain sensitive information via an HTTP request.
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.
CRLF injection vulnerability in the integrated web server on Siemens SIMATIC S7-1200 CPU devices 2.x and 3.x allows remote attackers to inject arbitrary HTTP headers via unspecified vectors.
Cross-site scripting (XSS) vulnerability in the integrated web server on Siemens SIMATIC S7-1200 CPU devices 2.x and 3.x allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
Siemens SINEMA Server before 12 SP1 allows remote attackers to cause a denial of service (web-interface outage) via crafted HTTP requests to port (1) 4999 or (2) 80.
Multiple directory traversal vulnerabilities in the integrated web server in Siemens SINEMA Server before 12 SP1 allow remote attackers to access arbitrary files via HTTP traffic to port (1) 4999 or (2) 80.
Multiple unspecified vulnerabilities in the integrated web server in Siemens SINEMA Server before 12 SP1 allow remote attackers to execute arbitrary code via HTTP traffic to port (1) 4999 or (2) 80.
The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.
The web management interface in Siemens RuggedCom ROS before 3.11, ROS 3.11 before 3.11.5 for RS950G, ROS 3.12, and ROS 4.0 for RSG2488 allows remote attackers to cause a denial of service (interface outage) via crafted HTTP packets.
Siemens SIMATIC S7-1200 CPU PLC devices with firmware before 4.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted HTTPS packets, a different vulnerability than CVE-2014-2259.
Siemens SIMATIC S7-1200 CPU PLC devices with firmware before 4.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted HTTP packets, a different vulnerability than CVE-2014-2255.
Siemens SIMATIC S7-1200 CPU PLC devices with firmware before 4.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted ISO-TSAP packets, a different vulnerability than CVE-2014-2257.
Siemens SIMATIC S7-1200 CPU PLC devices with firmware before 4.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted PROFINET packets, a different vulnerability than CVE-2014-2253.
The random-number generator on Siemens SIMATIC S7-1200 CPU PLC devices with firmware before 4.0 does not have sufficient entropy, which makes it easier for remote attackers to defeat cryptographic protection mechanisms and hijack sessions via unspecified vectors, a different vulnerability than CVE-2014-2251.
Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted HTTPS packets.
Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted ISO-TSAP packets.
Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted HTTP packets.
Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allow remote attackers to cause a denial of service (defect-mode transition) via crafted Profinet packets.
The random-number generator on Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 does not have sufficient entropy, which makes it easier for remote attackers to defeat cryptographic protection mechanisms and hijack sessions via unspecified vectors.
Cross-site request forgery (CSRF) vulnerability on Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 and SIMATIC S7-1200 CPU PLC devices with firmware before 4.0 allows remote attackers to hijack the authentication of unspecified victims via unknown vectors.
Open redirect vulnerability in the integrated web server on Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via unspecified vectors.
The integrated web server on Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allows remote attackers to inject headers via unspecified vectors.
Cross-site scripting (XSS) vulnerability in the integrated web server on Siemens SIMATIC S7-1500 CPU PLC devices with firmware before 1.5.0 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
The SNMP implementation in Siemens RuggedCom ROS before 3.11, ROS 3.11 for RS950G, ROS 3.12 before 3.12.4, and ROS 4.0 for RSG2488 allows remote attackers to cause a denial of service (device outage) via crafted packets.
Siemens SIMATIC WinCC OA before 3.12 P002 January allows remote attackers to cause a denial of service (monitoring-service outage) via malformed HTTP requests to port 4999.
Directory traversal vulnerability in Siemens SIMATIC WinCC OA before 3.12 P002 January allows remote attackers to read arbitrary files via crafted packets to TCP port 4999.
The integrated web server in Siemens SIMATIC WinCC OA before 3.12 P002 January allows remote attackers to execute arbitrary code via crafted packets to TCP port 4999.
Siemens SIMATIC WinCC OA before 3.12 P002 January uses a weak hash algorithm for passwords, which makes it easier for remote attackers to obtain access via a brute-force attack.
The integrated HTTPS server in Siemens RuggedCom ROS before 3.12.2 allows remote authenticated users to bypass intended restrictions on administrative actions by leveraging access to a (1) guest or (2) operator account.
The integrated HTTPS server in Siemens RuggedCom ROS before 3.12.2 allows remote attackers to hijack web sessions by predicting a session id value.
Siemens COMOS before 9.2.0.8.1, 10.0 before 10.0.3.1.40, and 10.1 before 10.1.0.0.2 allows local users to gain database privileges via unspecified vectors.
Siemens SINAMICS S/G controllers with firmware before 4.6.11 do not require authentication for FTP and TELNET sessions, which allows remote attackers to bypass intended access restrictions via TCP traffic to port (1) 21 or (2) 23.
The integrated web server on Siemens SCALANCE X-200 switches with firmware before 4.5.0 and X-200IRT switches with firmware before 5.1.0 does not properly enforce authentication requirements, which allows remote attackers to perform administrative actions via requests to the management interface.
The authentication implementation in the web server on Siemens SCALANCE X-200 switches with firmware before 5.0.0 does not use a sufficient source of entropy for generating values of random numbers, which makes it easier for remote attackers to hijack sessions by predicting a value.
The client application in Siemens COMOS before 9.1 Update 458, 9.2 before 9.2.0.6.37, and 10.0 before 10.0.3.0.19 allows local users to gain privileges and bypass intended database-operation restrictions by leveraging COMOS project access.
Open redirect vulnerability in Siemens WinCC (TIA Portal) 11 and 12 before 12 SP1 allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks by leveraging improper configuration of SIMATIC HMI panels by the WinCC product.
Cross-site request forgery (CSRF) vulnerability in Siemens WinCC (TIA Portal) 11 and 12 before 12 SP1 allows remote attackers to hijack the authentication of unspecified victims by leveraging improper configuration of SIMATIC HMI panels by the WinCC product.
Unspecified vulnerability in the command-line management interface on Siemens Scalance W7xx devices with firmware before 4.5.4 allows remote attackers to bypass authentication and execute arbitrary code via a (1) SSH or (2) TELNET connection.
Siemens Scalance W7xx devices with firmware before 4.5.4 use the same hardcoded X.509 certificate across different customers' installations, which makes it easier for remote attackers to conduct man-in-the-middle attacks against SSL sessions by leveraging the certificate's trust relationship.
core/getLog.php on the Siemens Enterprise OpenScape Branch appliance and OpenScape Session Border Controller (SBC) before 2 R0.32.0, and 7 before 7 R1.7.0, allows remote attackers to execute arbitrary commands via unspecified vectors.
core/getLog.php on the Siemens Enterprise OpenScape Branch appliance and OpenScape Session Border Controller (SBC) before 2 R0.32.0, and 7 before 7 R1.7.0, allows remote attackers to read arbitrary files via unspecified vectors.
Cross-site scripting (XSS) vulnerability in core/handleTw.php on the Siemens Enterprise OpenScape Branch appliance and OpenScape Session Border Controller (SBC) before 2 R0.32.0, and 7 before 7 R1.7.0, allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
core/getLog.php on the Siemens Enterprise OpenScape Branch appliance and OpenScape Session Border Controller (SBC) before 2 R0.32.0, and 7 before 7 R1.7.0, allows remote attackers to obtain sensitive server and statistics information via unspecified vectors.
Unspecified vulnerability in the client library in Siemens COMOS 9.2 before 9.2.0.6.10 and 10.0 before 10.0.3.0.4 allows local users to obtain unintended write access to the database by leveraging read access.
The Web Navigator in Siemens WinCC before 7.2 Update 1, as used in SIMATIC PCS7 8.0 SP1 and earlier and other products, exhibits different behavior for NetBIOS user names depending on whether the user account exists, which allows remote authenticated users to enumerate account names via crafted URL parameters.
The login implementation in the Web Navigator in Siemens WinCC before 7.2 Update 1, as used in SIMATIC PCS7 8.0 SP1 and earlier and other products, has a hardcoded account, which makes it easier for remote attackers to obtain access via an unspecified request.
SQL injection vulnerability in the login screen in the Web Navigator in Siemens WinCC before 7.2 Update 1, as used in SIMATIC PCS7 8.0 SP1 and earlier and other products, allows remote attackers to execute arbitrary SQL commands via unspecified vectors.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (Versions < V5.0.0 for CVE-2013-3633 and versions < V4.5.0 for CVE-2013-3634), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.1.0). The implementation of SNMPv3 does not check the user credentials sufficiently. Therefore, an attacker is able to execute SNMP commands without correct credentials.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (Versions < V5.0.0 for CVE-2013-3633 and versions < V4.5.0 for CVE-2013-3634), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.1.0). The user privileges for the web interface are only enforced on client side and not properly verified on server side. Therefore, an attacker is able to execute privileged commands using an unprivileged account.
Siemens SIMATIC S7-1200 PLCs 2.x and 3.x allow remote attackers to cause a denial of service (defect-mode transition and control outage) via crafted packets to UDP port 161 (aka the SNMP port).
Siemens SIMATIC S7-1200 PLCs 2.x and 3.x allow remote attackers to cause a denial of service (defect-mode transition and control outage) via crafted packets to TCP port 102 (aka the ISO-TSAP port).
The debugging feature on the Siemens CP 1604 and CP 1616 interface cards with firmware before 2.5.2 allows remote attackers to execute arbitrary code via a crafted packet to UDP port 17185.
Directory traversal vulnerability in the web server in Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, allows remote authenticated users to read arbitrary files via vectors involving a query for a pathname.
Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, does not properly represent WebNavigator credentials in a database, which makes it easier for remote authenticated users to obtain sensitive information via a SQL query.
The web server in Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, allows remote attackers to obtain sensitive information or cause a denial of service via a crafted project file.
Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, does not properly assign privileges for the database containing WebNavigator credentials, which allows remote authenticated users to obtain sensitive information via a SQL query.
Buffer overflow in CCEServer (aka the central communications component) in Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, allows remote attackers to cause a denial of service via a crafted packet.
Buffer overflow in the RegReader ActiveX control in Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, allows remote attackers to execute arbitrary code via a long parameter.
Cross-site scripting (XSS) vulnerability in the HMI web application in Siemens WinCC (TIA Portal) 11 allows remote authenticated users to inject arbitrary web script or HTML via unspecified data.
Directory traversal vulnerability in Siemens WinCC (TIA Portal) 11 allows remote authenticated users to read HMI web-application source code and user-defined scripts via a crafted URL.
CRLF injection vulnerability in the HMI web application in Siemens WinCC (TIA Portal) 11 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via a crafted URL.
The HMI web application in Siemens WinCC (TIA Portal) 11 allows remote authenticated users to cause a denial of service (daemon crash) via a crafted HTTP request.
Multiple cross-site scripting (XSS) vulnerabilities in the HMI web application in Siemens WinCC (TIA Portal) 11 allow remote attackers to inject arbitrary web script or HTML via a crafted URL.
Cross-site scripting (XSS) vulnerability in the HMI web application in Siemens WinCC (TIA Portal) 11 allows remote attackers to inject arbitrary web script or HTML via a crafted URL.
Siemens WinCC (TIA Portal) 11 uses a reversible algorithm for storing HMI web-application passwords in world-readable and world-writable files, which allows local users to obtain sensitive information by leveraging (1) physical access or (2) Sm@rt Server access.
Buffer overflow in a third-party ActiveX component in Siemens SIMATIC RF-MANAGER 2008, and RF-MANAGER Basic 3.0 and earlier, allows remote attackers to execute arbitrary code via a crafted web site.
Invensys Wonderware InTouch 2012 R2 and earlier and Siemens ProcessSuite use a weak encryption algorithm for data in Ps_security.ini, which makes it easier for local users to discover passwords by reading this file.
Memory leak in Siemens Automation License Manager (ALM) 4.x and 5.x before 5.2 allows remote attackers to cause a denial of service (memory consumption) via crafted packets.
AscoServer.exe in the server in Siemens SiPass integrated MP2.6 and earlier does not properly handle IOCP RPC messages received over an Ethernet network, which allows remote attackers to write data to any memory location and consequently execute arbitrary code via crafted messages, as demonstrated by an arbitrary pointer dereference attack or a buffer overflow attack.
WebNavigator in Siemens WinCC 7.0 SP3 and earlier, as used in SIMATIC PCS7 and other products, allows remote attackers to discover a username and password via crafted parameters to unspecified methods in ActiveX controls.
SQL injection vulnerability in WebNavigator in Siemens WinCC 7.0 SP3 and earlier, as used in SIMATIC PCS7 and other products, allows remote attackers to execute arbitrary SQL commands via a crafted SOAP message.
Multiple cross-site scripting (XSS) vulnerabilities in WebNavigator in Siemens WinCC 7.0 SP3 and earlier, as used in SIMATIC PCS7 and other products, allow remote attackers to inject arbitrary web script or HTML via a (1) GET parameter, (2) POST parameter, or (3) Referer HTTP header.
WebNavigator in Siemens WinCC 7.0 SP3 and earlier, as used in SIMATIC PCS7 and other products, stores sensitive information under the web root with insufficient access control, which allows remote attackers to read a (1) log file or (2) configuration file via a direct request.
Cross-site request forgery (CSRF) vulnerability in WebNavigator in Siemens WinCC 7.0 SP3 and earlier, as used in SIMATIC PCS7 and other products, allows remote attackers to hijack the authentication of arbitrary users for requests that modify data or cause a denial of service.
Siemens COMOS before 9.1 Patch 413, 9.2 before Update 03 Patch 023, and 10.0 before Patch 005 allows remote authenticated users to obtain database administrative access via unspecified method calls.
The Siemens Synco OZW Web Server devices OZW672.*, OZW772.*, and OZW775 with firmware before 4 have an unspecified default password, which makes it easier for remote attackers to obtain administrative access via a network session.
Siemens SIMATIC S7-400 PN CPU devices with firmware 5.x allow remote attackers to cause a denial of service (defect-mode transition and service outage) via (1) malformed HTTP traffic or (2) malformed IP packets.
Siemens SIMATIC S7-400 PN CPU devices with firmware 6 before 6.0.3 allow remote attackers to cause a denial of service (defect-mode transition and service outage) via crafted ICMP packets.
Untrusted search path vulnerability in Siemens SIMATIC STEP7 before 5.5 SP1, as used in SIMATIC PCS7 7.1 SP3 and earlier and other products, allows local users to gain privileges via a Trojan horse DLL in a STEP7 project folder.
Open redirect vulnerability in an unspecified web application in Siemens WinCC 7.0 SP3 before Update 2 allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL in a GET request.
Buffer overflow in the DiagAgent web server in Siemens WinCC 7.0 SP3 through Update 2 allows remote attackers to cause a denial of service (agent outage) via crafted input.
Multiple directory traversal vulnerabilities in Siemens WinCC 7.0 SP3 before Update 2 allow remote authenticated users to read arbitrary files via a crafted parameter in a URL.
The XPath functionality in unspecified web applications in Siemens WinCC 7.0 SP3 before Update 2 does not properly handle special characters in parameters, which allows remote authenticated users to read or modify settings via a crafted URL, related to an "XML injection" attack.
Multiple cross-site scripting (XSS) vulnerabilities in unspecified web applications in Siemens WinCC 7.0 SP3 before Update 2 allow remote attackers to inject arbitrary web script or HTML via vectors involving special characters in parameters.
RuggedCom Rugged Operating System (ROS) before 3.3 has a factory account with a password derived from the MAC Address field in a banner, which makes it easier for remote attackers to obtain access by performing a calculation on this address value, and then establishing a (1) SSH or (2) HTTPS session, a different vulnerability than CVE-2012-1803.
RuggedCom Rugged Operating System (ROS) 3.10.x and earlier has a factory account with a password derived from the MAC Address field in the banner, which makes it easier for remote attackers to obtain access by performing a calculation on this address value, and then establishing a (1) TELNET, (2) remote shell (aka rsh), or (3) serial-console session.
Buffer overflow in the embedded web server on the Siemens Scalance X Industrial Ethernet switch X414-3E before 3.7.1, X308-2M before 3.7.2, X-300EEC before 3.7.2, XR-300 before 3.7.2, and X-300 before 3.7.2 allows remote attackers to cause a denial of service (device reboot) or possibly execute arbitrary code via a malformed URL.
Stack-based buffer overflow in the Profinet DCP protocol implementation on the Siemens Scalance S Security Module firewall S602 V2, S612 V2, and S613 V2 with firmware before 2.3.0.3 allows remote attackers to cause a denial of service (device outage) or possibly execute arbitrary code via a crafted DCP frame.
The web server on the Siemens Scalance S Security Module firewall S602 V2, S612 V2, and S613 V2 with firmware before 2.3.0.3 does not limit the rate of authentication attempts, which makes it easier for remote attackers to obtain access via a brute-force attack on the administrative password.
miniweb.exe in the HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime does not properly handle URIs beginning with a 0xfa character, which allows remote attackers to read data from arbitrary memory locations or cause a denial of service (application crash) via a crafted POST request.
Directory traversal vulnerability in miniweb.exe in the HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime allows remote attackers to read arbitrary files via a ..%5c (dot dot backslash) in a URI.
HmiLoad in the runtime loader in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime, when Transfer Mode is enabled, allows remote attackers to cause a denial of service (application crash) by sending crafted data over TCP.
Directory traversal vulnerability in HmiLoad in the runtime loader in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime, when Transfer Mode is enabled, allows remote attackers to execute, read, create, modify, or delete arbitrary files via a .. (dot dot) in a string.
Stack-based buffer overflow in HmiLoad in the runtime loader in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime, when Transfer Mode is enabled, allows remote attackers to execute arbitrary code via vectors related to Unicode strings.
The TELNET daemon in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime does not perform authentication, which makes it easier for remote attackers to obtain access via a TCP session.
Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime allow user-assisted remote attackers to execute arbitrary code via a crafted project file, related to the HMI web server and runtime loader.
CRLF injection vulnerability in the HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via unspecified vectors.
Cross-site scripting (XSS) vulnerability in the HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2011-4510.
Cross-site scripting (XSS) vulnerability in the HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2011-4511.
The HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime has an improperly selected default password for the administrator account, which makes it easier for remote attackers to obtain access via a brute-force approach involving many HTTP requests.
The HMI web server in Siemens WinCC flexible 2004, 2005, 2007, and 2008 before SP3; WinCC V11 (aka TIA portal) before SP2 Update 1; the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime generates predictable authentication tokens for cookies, which makes it easier for remote attackers to bypass authentication via a crafted cookie.
Absolute path traversal vulnerability in the ALMListView.ALMListCtrl ActiveX control in almaxcx.dll in the graphical user interface in Siemens Automation License Manager (ALM) 2.0 through 5.1+SP1+Upd2 allows remote attackers to overwrite arbitrary files via the Save method.
Siemens Automation License Manager (ALM) 4.0 through 5.1+SP1+Upd1 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via crafted content in a (1) get_target_ocx_param or (2) send_target_ocx_param command.
Siemens Automation License Manager (ALM) 4.0 through 5.1+SP1+Upd1 does not properly copy fields obtained from clients, which allows remote attackers to cause a denial of service (exception and daemon crash) via long fields, as demonstrated by fields to the (1) open_session->workstation->NAME or (2) grant->VERSION function.
Multiple buffer overflows in Siemens Automation License Manager (ALM) 4.0 through 5.1+SP1+Upd1 allow remote attackers to execute arbitrary code via a long serialid field in an _licensekey command, as demonstrated by the (1) check_licensekey or (2) read_licensekey command.
An unspecified ActiveX control in ActBar.ocx in Siemens Tecnomatix FactoryLink 6.6.1 (aka 6.6 SP1), 7.5.217 (aka 7.5 SP2), and 8.0.2.54 allows remote attackers to create or overwrite arbitrary files via the save method.
Buffer overflow in the WebClient ActiveX control in Siemens Tecnomatix FactoryLink 6.6.1 (aka 6.6 SP1), 7.5.217 (aka 7.5 SP2), and 8.0.2.54 allows remote attackers to execute arbitrary code via a long string in a parameter associated with the location URL.
Heap-based buffer overflow in the Siemens WinCC Runtime Advanced Loader, as used in SIMATIC WinCC flexible Runtime and SIMATIC WinCC (TIA Portal) Runtime Advanced, allows remote attackers to cause a denial of service (memory corruption) or possibly execute arbitrary code via a crafted packet to TCP port 2308.
The SSL protocol, as used in certain configurations in Microsoft Windows and Microsoft Internet Explorer, Mozilla Firefox, Google Chrome, Opera, and other products, encrypts data by using CBC mode with chained initialization vectors, which allows man-in-the-middle attackers to obtain plaintext HTTP headers via a blockwise chosen-boundary attack (BCBA) on an HTTPS session, in conjunction with JavaScript code that uses (1) the HTML5 WebSocket API, (2) the Java URLConnection API, or (3) the Silverlight WebClient API, aka a "BEAST" attack.
Siemens Simatic WinCC and PCS 7 SCADA system uses a hard-coded password, which allows local users to access a back-end database and gain privileges, as demonstrated in the wild in July 2010 by the Stuxnet worm, a different vulnerability than CVE-2010-2568.
The Siemens Gigaset SE361 WLAN router allows remote attackers to cause a denial of service (device reboot) via a flood of crafted TCP packets to port 1723.
Siemens C450 IP and C475 IP VoIP devices allow remote attackers to cause a denial of service (disconnected calls and device reboot) via a crafted SIP packet to UDP port 5060.
Siemens Gigaset WLAN Camera 1.27 has an insecure default password, which allows remote attackers to conduct unauthorized activities. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
Siemens SpeedStream 5200 with NetPort Software 1.1 allows remote attackers to bypass authentication via an invalid Host header, possibly involving a trailing dot in the hostname.
Siemens Gigaset SE461 WiMAX router 1.5-BL024.9.6401, and possibly other versions, allows remote attackers to cause a denial of service (device restart and loss of configuration) by connecting to TCP port 53, then closing the connection.
The Siemens SpeedStream 6520 router allows remote attackers to cause a denial of service (web interface crash) via an HTTP request to basehelp_English.htm with a large integer in the Content-Length field.
Multiple cross-site scripting (XSS) vulnerabilities in the Siemens Gigaset SE361 WLAN router with firmware 1.00.0 allow remote attackers to inject arbitrary web script or HTML via the portion of the URI immediately following the filename for (1) a GIF filename, which triggers display of the GIF file in text format and an unspecified denial of service (crash); or (2) the login.tri filename, which triggers a continuous loop of the browser attempting to visit the login page.
Siemens SpeedStream 2624 allows remote attackers to cause a denial of service (device hang) by sending a crafted packet to the web administrative interface.
Siemens Speedstream Wireless Router 2624 allows local users to bypass authentication and access protected files by using the Universal Plug and Play UPnP/1.0 component.
The management interface for Siemens SANTIS 50 running firmware 4.2.8.0, and possibly other products including Ericsson HN294dp and Dynalink RTA300W, allows remote attackers to access the Telnet port without authentication via certain packets to the web interface that cause the interface to freeze.
GUI overlay vulnerability in the Java API in Siemens S55 cellular phones allows remote attackers to send unauthorized SMS messages by overlaying a confirmation message with a malicious message.
Buffer overflow in Siemens 45 series mobile phones allows remote attackers to cause a denial of service (disconnect and unavailable inbox) via a Short Message Service (SMS) message with a long image name.
OpenSSH-portable (OpenSSH) 3.6.1p1 and earlier with PAM support enabled immediately sends an error message when a user does not exist, which allows remote attackers to determine valid usernames via a timing attack.
DB4Web server, when configured to use verbose debug messages, allows remote attackers to use DB4Web as a proxy and attempt TCP connections to other systems (port scan) via a request for a URL that specifies the target IP address and port, which produces a connection status in the resulting error message.
Siemens 3568i WAP mobile phones allows remote attackers to cause a denial of service (crash) via an SMS message containing unusual characters.
ppd in Reliant Sinix allows local users to corrupt arbitrary files via a symlink attack in the /tmp/ppd.trace file.
Reliant Unix 5.44 and earlier allows remote attackers to cause a denial of service via an ICMP port unreachable packet, which causes Reliant to drop all connections to the source address of the packet.
Buffer overflow in the web administration service for the HiNet LP5100 IP-phone allows remote attackers to cause a denial of service and possibly execute arbitrary commands via a long GET request.
FTP servers can allow an attacker to connect to arbitrary ports on machines other than the FTP client, aka FTP bounce.