CVE-2024-10069 Vulnerability Analysis & Exploit Details

CVE-2024-10069
Vulnerability Scoring

8.8
/10
Severe Risk

Cybersecurity professionals consider CVE-2024-10069 an immediate threat requiring urgent mitigation.

Attack Complexity Details

  • Attack Complexity: Low
    Exploits can be performed without significant complexity or special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: Low
    Some privileges are necessary to exploit the vulnerability.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2024-10069 Details

Status: Analyzed

Last updated: 🕑 22 Oct 2024, 14:19 UTC
Originally published on: 🕒 17 Oct 2024, 15:15 UTC

Time between publication and last update: 4 days

CVSS Release: version 3

CVSS3 Source

nvd@nist.gov

CVSS3 Type

Primary

CVSS3 Vector

CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

CVE-2024-10069 Vulnerability Summary

CVE-2024-10069: A vulnerability was found in ESAFENET CDG 5. It has been rated as critical. Affected by this issue is the function actionPassMainApplication of the file /com/esafenet/servlet/client/MailDecryptApplicationService.java. The manipulation of the argument id leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.

Assessing the Risk of CVE-2024-10069

Access Complexity Graph

The exploitability of CVE-2024-10069 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2024-10069

CVE-2024-10069 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2024-10069, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2024-10069, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: High
    Exploiting CVE-2024-10069 can result in unauthorized access to sensitive data, severely compromising data privacy.
  • Integrity: High
    CVE-2024-10069 could allow unauthorized modifications to data, potentially affecting system reliability and trust.
  • Availability: High
    CVE-2024-10069 can disrupt system operations, potentially causing complete denial of service (DoS).

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.073% (probability of exploit)

EPSS Percentile: 35.14% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 64.86% of others.

CVE-2024-10069 References

External References

CWE Common Weakness Enumeration

CWE-89

CAPEC Common Attack Pattern Enumeration and Classification

  • Command Line Execution through SQL Injection CAPEC-108 An attacker uses standard SQL injection methods to inject data into the command line for execution. This could be done directly through misuse of directives such as MSSQL_xp_cmdshell or indirectly through injection of data into the database that would be interpreted as shell commands. Sometime later, an unscrupulous backend application (or could be part of the functionality of the same application) fetches the injected data stored in the database and uses this data as command line arguments without performing proper validation. The malicious data escapes that data plane by spawning new commands to be executed on the host.
  • Object Relational Mapping Injection CAPEC-109 An attacker leverages a weakness present in the database access layer code generated with an Object Relational Mapping (ORM) tool or a weakness in the way that a developer used a persistence framework to inject their own SQL commands to be executed against the underlying database. The attack here is similar to plain SQL injection, except that the application does not use JDBC to directly talk to the database, but instead it uses a data access layer generated by an ORM tool or framework (e.g. Hibernate). While most of the time code generated by an ORM tool contains safe access methods that are immune to SQL injection, sometimes either due to some weakness in the generated code or due to the fact that the developer failed to use the generated access methods properly, SQL injection is still possible.
  • SQL Injection through SOAP Parameter Tampering CAPEC-110 An attacker modifies the parameters of the SOAP message that is sent from the service consumer to the service provider to initiate a SQL injection attack. On the service provider side, the SOAP message is parsed and parameters are not properly validated before being used to access a database in a way that does not use parameter binding, thus enabling the attacker to control the structure of the executed SQL query. This pattern describes a SQL injection attack with the delivery mechanism being a SOAP message.
  • Expanding Control over the Operating System from the Database CAPEC-470 An attacker is able to leverage access gained to the database to read / write data to the file system, compromise the operating system, create a tunnel for accessing the host machine, and use this access to potentially attack other machines on the same network as the database machine. Traditionally SQL injections attacks are viewed as a way to gain unauthorized read access to the data stored in the database, modify the data in the database, delete the data, etc. However, almost every data base management system (DBMS) system includes facilities that if compromised allow an attacker complete access to the file system, operating system, and full access to the host running the database. The attacker can then use this privileged access to launch subsequent attacks. These facilities include dropping into a command shell, creating user defined functions that can call system level libraries present on the host machine, stored procedures, etc.
  • SQL Injection CAPEC-66 This attack exploits target software that constructs SQL statements based on user input. An attacker crafts input strings so that when the target software constructs SQL statements based on the input, the resulting SQL statement performs actions other than those the application intended. SQL Injection results from failure of the application to appropriately validate input.
  • Blind SQL Injection CAPEC-7 Blind SQL Injection results from an insufficient mitigation for SQL Injection. Although suppressing database error messages are considered best practice, the suppression alone is not sufficient to prevent SQL Injection. Blind SQL Injection is a form of SQL Injection that overcomes the lack of error messages. Without the error messages that facilitate SQL Injection, the adversary constructs input strings that probe the target through simple Boolean SQL expressions. The adversary can determine if the syntax and structure of the injection was successful based on whether the query was executed or not. Applied iteratively, the adversary determines how and where the target is vulnerable to SQL Injection.

Vulnerable Configurations

  • cpe:2.3:a:esafenet:cdg:5:*:*:*:*:*:*:*
    cpe:2.3:a:esafenet:cdg:5:*:*:*:*:*:*:*

Protect Your Infrastructure against CVE-2024-10069: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-2129 – A vulnerability was found in Mage AI 0.9.75. It has been classified as problematic. This affects an unknown part. The manipulation leads to insecur...
  • CVE-2025-2127 – A vulnerability was found in JoomlaUX JUX Real Estate 3.4.0 on Joomla. It has been classified as problematic. Affected is an unknown function of th...
  • CVE-2025-2126 – A vulnerability was found in JoomlaUX JUX Real Estate 3.4.0 on Joomla and classified as critical. This issue affects some unknown processing of the...
  • CVE-2025-2125 – A vulnerability has been found in Control iD RH iD 25.2.25.0 and classified as problematic. This vulnerability affects unknown code of the file /v2...
  • CVE-2025-2124 – A vulnerability, which was classified as problematic, was found in Control iD RH iD 25.2.25.0. This affects an unknown part of the file /v2/custome...