CVE-2020-26230
Vulnerability Scoring
Status: Analyzed - Last modified: 04 Feb 2021, 15:42 UTC Published: 13 Nov 2020, 19:15 UTC
Radar COVID is the official COVID-19 exposure notification app for Spain. In affected versions of Radar COVID, identification and de-anonymization of COVID-19 positive users that upload Radar COVID TEKs to the Radar COVID server is possible. This vulnerability enables the identification and de-anonymization of COVID-19 positive users when using Radar COVID. The vulnerability is caused by the fact that Radar COVID connections to the server (uploading of TEKs to the backend) are only made by COVID-19 positives. Therefore, any on-path observer with the ability to monitor traffic between the app and the server can identify which users had a positive test. Such an adversary can be the mobile network operator (MNO) if the connection is done through a mobile network, the Internet Service Provider (ISP) if the connection is done through the Internet (e.g., a home network), a VPN provider used by the user, the local network operator in the case of enterprise networks, or any eavesdropper with access to the same network (WiFi or Ethernet) as the user as could be the case of public WiFi hotspots deployed at shopping centers, airports, hotels, and coffee shops. The attacker may also de-anonymize the user. For this additional stage to succeed, the adversary needs to correlate Radar COVID traffic to other identifiable information from the victim. This could be achieved by associating the connection to a contract with the name of the victim or by associating Radar COVID traffic to other user-generated flows containing identifiers in the clear (e.g., HTTP cookies or other mobile flows sending unique identifiers like the IMEI or the AAID without encryption). The former can be executed, for instance, by the Internet Service Provider or the MNO. The latter can be executed by any on-path adversary, such as the network provider or even the cloud provider that hosts more than one service accessed by the victim. The farther the adversary is either from the victim (the client) or the end-point (the server), the less likely it may be that the adversary has access to re-identification information. The vulnerability has been mitigated with the injection of dummy traffic from the application to the backend. Dummy traffic is generated by all users independently of whether they are COVID-19 positive or not. The issue was fixed in iOS in version 1.0.8 (uniform distribution), 1.1.0 (exponential distribution), Android in version 1.0.7 (uniform distribution), 1.1.0 (exponential distribution), Backend in version 1.1.2-RELEASE. For more information see the referenced GitHub Security Advisory.
Above is the Access Complexity Graph for CVE-2020-26230. It helps visualize the difficulty level and privilege requirements needed to exploit this vulnerability, providing a quick assessment of its exploitation feasibility.
Above is the CVSS Sub-score Breakdown for CVE-2020-26230, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2020-26230, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.402% (probability of exploit)
EPSS Percentile: 73.71%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 26.290000000000006% of others.
nvd@nist.gov
Primary
CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.