Focus on pytorch vulnerabilities and metrics.
Last updated: 01 Aug 2025, 22:25 UTC
This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with pytorch. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.
For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.
Total pytorch CVEs: 4
Earliest CVE date: 28 Sep 2023, 23:15 UTC
Latest CVE date: 10 Mar 2025, 13:15 UTC
Latest CVE reference: CVE-2025-2149
30-day Count (Rolling): 0
365-day Count (Rolling): 2
Calendar-based Variation
Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.
Month Variation (Calendar): 0%
Year Variation (Calendar): 0.0%
Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): 0.0%
Average CVSS: 1.52
Max CVSS: 5.1
Critical CVEs (≥9): 0
Range | Count |
---|---|
0.0-3.9 | 3 |
4.0-6.9 | 1 |
7.0-8.9 | 0 |
9.0-10.0 | 0 |
These are the five CVEs with the highest CVSS scores for pytorch, sorted by severity first and recency.
A vulnerability was found in PyTorch 2.6.0+cu124. It has been rated as problematic. Affected by this issue is the function nnq_Sigmoid of the component Quantized Sigmoid Module. The manipulation of the argument scale/zero_point leads to improper initialization. The attack needs to be approached locally. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used.
A vulnerability was found in PyTorch 2.6.0+cu124. It has been declared as critical. Affected by this vulnerability is the function torch.ops.profiler._call_end_callbacks_on_jit_fut of the component Tuple Handler. The manipulation of the argument None leads to memory corruption. The attack can be launched remotely. The complexity of an attack is rather high. The exploitation appears to be difficult.
TorchServe is a tool for serving and scaling PyTorch models in production. Starting in version 0.1.0 and prior to version 0.9.0, using the model/workflow management API, there is a chance of uploading potentially harmful archives that contain files that are extracted to any location on the filesystem that is within the process permissions. Leveraging this issue could aid third-party actors in hiding harmful code in open-source/public models, which can be downloaded from the internet, and take advantage of machines running Torchserve. The ZipSlip issue in TorchServe has been fixed by validating the paths of files contained within a zip archive before extracting them. TorchServe release 0.9.0 includes fixes to address the ZipSlip vulnerability.
TorchServe is a tool for serving and scaling PyTorch models in production. TorchServe default configuration lacks proper input validation, enabling third parties to invoke remote HTTP download requests and write files to the disk. This issue could be taken advantage of to compromise the integrity of the system and sensitive data. This issue is present in versions 0.1.0 to 0.8.1. A user is able to load the model of their choice from any URL that they would like to use. The user of TorchServe is responsible for configuring both the allowed_urls and specifying the model URL to be used. A pull request to warn the user when the default value for allowed_urls is used has been merged in PR #2534. TorchServe release 0.8.2 includes this change. Users are advised to upgrade. There are no known workarounds for this issue.