Focus on linaro vulnerabilities and metrics.
Last updated: 08 Mar 2025, 23:25 UTC
This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with linaro. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.
For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.
Total linaro CVEs: 21
Earliest CVE date: 15 Jun 2018, 02:29 UTC
Latest CVE date: 15 Sep 2023, 20:15 UTC
Latest CVE reference: CVE-2023-41325
30-day Count (Rolling): 0
365-day Count (Rolling): 0
Calendar-based Variation
Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.
Month Variation (Calendar): 0%
Year Variation (Calendar): -100.0%
Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): -100.0%
Average CVSS: 4.67
Max CVSS: 10.0
Critical CVEs (≥9): 3
Range | Count |
---|---|
0.0-3.9 | 7 |
4.0-6.9 | 8 |
7.0-8.9 | 3 |
9.0-10.0 | 3 |
These are the five CVEs with the highest CVSS scores for linaro, sorted by severity first and recency.
OP-TEE is a Trusted Execution Environment (TEE) designed as companion to a non-secure Linux kernel running on Arm; Cortex-A cores using the TrustZone technology. Starting in version 3.20 and prior to version 3.22, `shdr_verify_signature` can make a double free. `shdr_verify_signature` used to verify a TA binary before it is loaded. To verify a signature of it, allocate a memory for RSA key. RSA key allocate function (`sw_crypto_acipher_alloc_rsa_public_key`) will try to allocate a memory (which is optee’s heap memory). RSA key is consist of exponent and modulus (represent as variable `e`, `n`) and it allocation is not atomic way, so it may succeed in `e` but fail in `n`. In this case sw_crypto_acipher_alloc_rsa_public_key` will free on `e` and return as it is failed but variable ‘e’ is remained as already freed memory address . `shdr_verify_signature` will free again that memory (which is `e`) even it is freed when it failed allocate RSA key. A patch is available in version 3.22. No known workarounds are available.
An unprotected memory-access operation in optee_os in TrustedFirmware Open Portable Trusted Execution Environment (OP-TEE) before 3.20 allows a physically proximate adversary to bypass signature verification and install malicious trusted applications via electromagnetic fault injections.
In Linaro Automated Validation Architecture (LAVA) before 2022.11.1, remote code execution can be achieved through user-submitted Jinja2 template. The REST API endpoint for validating device configuration files in lava-server loads input as a Jinja2 template in a way that can be used to trigger remote code execution in the LAVA server.
In Linaro Automated Validation Architecture (LAVA) before 2022.11, users with valid credentials can submit crafted XMLRPC requests that cause a recursive XML entity expansion, leading to excessive use of memory on the server and a Denial of Service.
In Linaro Automated Validation Architecture (LAVA) before 2022.10, there is dynamic code execution in lava_server/lavatable.py. Due to improper input sanitization, an anonymous user can force the lava-server-gunicorn service to execute user-provided code on the server.
An issue was discovered in Trusted Firmware OP-TEE Trusted OS through 3.15.0. The OPTEE-OS CSU driver for NXP i.MX6UL SoC devices lacks security access configuration for wakeup-related registers, resulting in TrustZone bypass because the NonSecure World can perform arbitrary memory read/write operations on Secure World memory. This involves a v cycle.
The OPTEE-OS CSU driver for NXP i.MX SoC devices lacks security access configuration for several models, resulting in TrustZone bypass because the NonSecure World can perform arbitrary memory read/write operations on Secure World memory. This involves a DMA capable peripheral.
In Linaro OP-TEE before 3.7.0, by using inconsistent or malformed data, it is possible to call update and final cryptographic functions directly, causing a crash that could leak sensitive information.
In Trusted Firmware-M through 1.3.0, cleaning up the memory allocated for a multi-part cryptographic operation (in the event of a failure) can prevent the abort() operation in the associated cryptographic library from freeing internal resources, causing a memory leak.
Western Digital has identified a security vulnerability in the Replay Protected Memory Block (RPMB) protocol as specified in multiple standards for storage device interfaces, including all versions of eMMC, UFS, and NVMe. The RPMB protocol is specified by industry standards bodies and is implemented by storage devices from multiple vendors to assist host systems in securing trusted firmware. Several scenarios have been identified in which the RPMB state may be affected by an attacker without the knowledge of the trusted component that uses the RPMB feature.
Linaro/OP-TEE OP-TEE Prior to version v3.4.0 is affected by: Boundary checks. The impact is: This could lead to corruption of any memory which the TA can access. The component is: optee_os. The fixed version is: v3.4.0.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Buffer Overflow. The impact is: Code execution in the context of TEE core (kernel). The component is: optee_os. The fixed version is: 3.4.0 and later.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Buffer Overflow. The impact is: Execution of code in TEE core (kernel) context. The component is: optee_os. The fixed version is: 3.4.0 and later.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Buffer Overflow. The impact is: Code execution in context of TEE core (kernel). The component is: optee_os. The fixed version is: 3.4.0 and later.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Buffer Overflow. The impact is: Memory corruption and disclosure of memory content. The component is: optee_os. The fixed version is: 3.4.0 and later.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Rounding error. The impact is: Potentially leaking code and/or data from previous Trusted Application. The component is: optee_os. The fixed version is: 3.4.0 and later.
Linaro/OP-TEE OP-TEE 3.3.0 and earlier is affected by: Boundary crossing. The impact is: Memory corruption of the TEE itself. The component is: optee_os. The fixed version is: 3.4.0 and later.
An issue was discovered in Linaro LAVA before 2018.5.post1. Because of use of yaml.load() instead of yaml.safe_load() when parsing user data, remote code execution can occur.
An issue was discovered in Linaro LAVA before 2018.5.post1. Because of support for URLs in the submit page, a user can forge an HTTP request that will force lava-server-gunicorn to return any file on the server that is readable by lavaserver and valid yaml.
An issue was discovered in Linaro LAVA before 2018.5.post1. Because of support for file: URLs, a user can force lava-server-gunicorn to download any file from the filesystem if it's readable by lavaserver and valid yaml.
LibTomCrypt through 1.18.1 allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.