kuwfi CVE Vulnerabilities & Metrics

Focus on kuwfi vulnerabilities and metrics.

Last updated: 16 Jan 2026, 23:25 UTC

About kuwfi Security Exposure

This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with kuwfi. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.

For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.

Global CVE Overview

Total kuwfi CVEs: 1
Earliest CVE date: 29 Dec 2025, 19:15 UTC
Latest CVE date: 29 Dec 2025, 19:15 UTC

Latest CVE reference: CVE-2025-68706

Rolling Stats

30-day Count (Rolling): 1
365-day Count (Rolling): 1

Calendar-based Variation

Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.

Variations & Growth

Month Variation (Calendar): 0%
Year Variation (Calendar): 0%

Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): 0.0%

Monthly CVE Trends (current vs previous Year)

Annual CVE Trends (Last 20 Years)

Critical kuwfi CVEs (CVSS ≥ 9) Over 20 Years

CVSS Stats

Average CVSS: 0.0

Max CVSS: 0

Critical CVEs (≥9): 0

CVSS Range vs. Count

Range Count
0.0-3.9 1
4.0-6.9 0
7.0-8.9 0
9.0-10.0 0

CVSS Distribution Chart

Top 5 Highest CVSS kuwfi CVEs

These are the five CVEs with the highest CVSS scores for kuwfi, sorted by severity first and recency.

All CVEs for kuwfi

CVE-2025-68706 kuwfi vulnerability CVSS: 0 29 Dec 2025, 19:15 UTC

A stack-based buffer overflow exists in the GoAhead-Webs HTTP daemon on KuWFi 4G LTE AC900 devices with firmware 1.0.13. The /goform/formMultiApnSetting handler uses sprintf() to copy the user-supplied pincode parameter into a fixed 132-byte stack buffer with no bounds checks. This allows an attacker to corrupt adjacent stack memory, crash the web server, and (under certain conditions) may enable arbitrary code execution.