Focus on gotenna vulnerabilities and metrics.
Last updated: 29 Jun 2025, 22:25 UTC
This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with gotenna. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.
For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.
Total gotenna CVEs: 9
Earliest CVE date: 01 May 2025, 18:15 UTC
Latest CVE date: 01 May 2025, 18:15 UTC
Latest CVE reference: CVE-2025-32890
30-day Count (Rolling): 0
365-day Count (Rolling): 9
Calendar-based Variation
Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.
Month Variation (Calendar): -100.0%
Year Variation (Calendar): 0%
Month Growth Rate (30-day Rolling): -100.0%
Year Growth Rate (365-day Rolling): 0.0%
Average CVSS: 0.0
Max CVSS: 0
Critical CVEs (≥9): 0
Range | Count |
---|---|
0.0-3.9 | 9 |
4.0-6.9 | 0 |
7.0-8.9 | 0 |
9.0-10.0 | 0 |
These are the five CVEs with the highest CVSS scores for gotenna, sorted by severity first and recency.
An issue was discovered on goTenna Mesh devices with app 5.5.3 and firmware 1.1.12. It uses a custom implementation of encryption without any additional integrity checking mechanisms. This leaves messages malleable to an attacker that can access the message.
An issue was discovered on goTenna v1 devices with app 5.5.3 and firmware 0.25.5. The verification token used for sending SMS through a goTenna server is hardcoded in the app.
An issue was discovered on goTenna Mesh devices with app 5.5.3 and firmware 1.1.12. The verification token used for sending SMS through a goTenna server is hardcoded in the app.
An issue was discovered on goTenna v1 devices with app 5.5.3 and firmware 0.25.5. A command channel includes the next hop. which can be intercepted and used to break frequency hopping.
An issue was discovered on goTenna v1 devices with app 5.5.3 and firmware 0.25.5. All packets sent over RF are also sent over UART with USB Shell, allowing someone with local access to gain information about the protocol and intercept sensitive data.
An issue was discovered on goTenna v1 devices with app 5.5.3 and firmware 0.25.5. The app there makes it possible to inject any custom message (into existing v1 networks) with any GID and Callsign via a software defined radio. This can be exploited if the device is being used in an unencrypted environment or if the cryptography has already been compromised.
An issue was discovered on goTenna Mesh devices with app 5.5.3 and firmware 1.1.12. By default, a GID is the user's phone number unless they specifically opt out. A phone number is very sensitive information because it can be tied back to individuals. The app does not encrypt the GID in messages.
An issue was discovered on goTenna v1 devices with app 5.5.3 and firmware 0.25.5. The app uses a custom implementation of encryption without any additional integrity checking mechanisms. This leaves messages malleable to an attacker that can access the message.
An issue was discovered on goTenna v1 devices with app 5.5.3 and firmware 0.25.5. By default, the GID is the user's phone number unless they specifically opt out. A phone number is very sensitive information because it can be tied back to individuals. The app does not encrypt the GID in messages.