filezilla-project CVE Vulnerabilities & Metrics

Focus on filezilla-project vulnerabilities and metrics.

Last updated: 08 Mar 2025, 23:25 UTC

About filezilla-project Security Exposure

This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with filezilla-project. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.

For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.

Global CVE Overview

Total filezilla-project CVEs: 6
Earliest CVE date: 15 Dec 2006, 11:28 UTC
Latest CVE date: 15 Apr 2024, 20:15 UTC

Latest CVE reference: CVE-2024-31497

Rolling Stats

30-day Count (Rolling): 0
365-day Count (Rolling): 1

Calendar-based Variation

Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.

Variations & Growth

Month Variation (Calendar): 0%
Year Variation (Calendar): 0.0%

Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): 0.0%

Monthly CVE Trends (current vs previous Year)

Annual CVE Trends (Last 20 Years)

Critical filezilla-project CVEs (CVSS ≥ 9) Over 20 Years

CVSS Stats

Average CVSS: 3.02

Max CVSS: 6.8

Critical CVEs (≥9): 0

CVSS Range vs. Count

Range Count
0.0-3.9 4
4.0-6.9 6
7.0-8.9 0
9.0-10.0 0

CVSS Distribution Chart

Top 5 Highest CVSS filezilla-project CVEs

These are the five CVEs with the highest CVSS scores for filezilla-project, sorted by severity first and recency.

All CVEs for filezilla-project

In PuTTY 0.68 through 0.80 before 0.81, biased ECDSA nonce generation allows an attacker to recover a user's NIST P-521 secret key via a quick attack in approximately 60 signatures. This is especially important in a scenario where an adversary is able to read messages signed by PuTTY or Pageant. The required set of signed messages may be publicly readable because they are stored in a public Git service that supports use of SSH for commit signing, and the signatures were made by Pageant through an agent-forwarding mechanism. In other words, an adversary may already have enough signature information to compromise a victim's private key, even if there is no further use of vulnerable PuTTY versions. After a key compromise, an adversary may be able to conduct supply-chain attacks on software maintained in Git. A second, independent scenario is that the adversary is an operator of an SSH server to which the victim authenticates (for remote login or file copy), even though this server is not fully trusted by the victim, and the victim uses the same private key for SSH connections to other services operated by other entities. Here, the rogue server operator (who would otherwise have no way to determine the victim's private key) can derive the victim's private key, and then use it for unauthorized access to those other services. If the other services include Git services, then again it may be possible to conduct supply-chain attacks on software maintained in Git. This also affects, for example, FileZilla before 3.67.0, WinSCP before 6.3.3, TortoiseGit before 2.15.0.1, and TortoiseSVN through 1.14.6.

The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust.

A vulnerability has been found in FileZilla Client 3.17.0.0 and classified as problematic. This vulnerability affects unknown code of the file C:\Program Files\FileZilla FTP Client\uninstall.exe of the component Installer. The manipulation leads to unquoted search path. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.

A vulnerability, which was classified as problematic, was found in FileZilla Server up to 0.9.50. This affects an unknown part of the component PORT Handler. The manipulation leads to unintended intermediary. It is possible to initiate the attack remotely. Upgrading to version 0.9.51 is able to address this issue. It is recommended to upgrade the affected component.

CVE-2022-29620 filezilla-project vulnerability CVSS: 4.3 07 Jun 2022, 21:15 UTC

FileZilla v3.59.0 allows attackers to obtain cleartext passwords of connected SSH or FTP servers via a memory dump.- NOTE: the vendor does not consider this a vulnerability

CVE-2019-5429 filezilla-project vulnerability CVSS: 6.8 29 Apr 2019, 15:29 UTC

Untrusted search path in FileZilla before 3.41.0-rc1 allows an attacker to gain privileges via a malicious 'fzsftp' binary in the user's home directory.

CVE-2014-0224 filezilla-project vulnerability CVSS: 5.8 05 Jun 2014, 21:55 UTC

OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.

CVE-2014-0160 filezilla-project vulnerability CVSS: 5.0 07 Apr 2014, 22:55 UTC

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed bug.

CVE-2009-0884 filezilla-project vulnerability CVSS: 4.3 12 Mar 2009, 15:20 UTC

Buffer overflow in FileZilla Server before 0.9.31 allows remote attackers to cause a denial of service via unspecified vectors related to SSL/TLS packets.

CVE-2006-6565 filezilla-project vulnerability CVSS: 4.0 15 Dec 2006, 11:28 UTC

FileZilla Server before 0.9.22 allows remote attackers to cause a denial of service (crash) via a wildcard argument to the (1) LIST or (2) NLST commands, which results in a NULL pointer dereference, a different set of vectors than CVE-2006-6564. NOTE: CVE analysis suggests that the problem might be due to a malformed PORT command.