dfinity CVE Vulnerabilities & Metrics

Focus on dfinity vulnerabilities and metrics.

Last updated: 08 Mar 2025, 23:25 UTC

About dfinity Security Exposure

This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with dfinity. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.

For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.

Global CVE Overview

Total dfinity CVEs: 2
Earliest CVE date: 08 Dec 2023, 15:15 UTC
Latest CVE date: 05 Sep 2024, 13:15 UTC

Latest CVE reference: CVE-2024-7884

Rolling Stats

30-day Count (Rolling): 0
365-day Count (Rolling): 1

Calendar-based Variation

Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.

Variations & Growth

Month Variation (Calendar): 0%
Year Variation (Calendar): 0.0%

Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): 0.0%

Monthly CVE Trends (current vs previous Year)

Annual CVE Trends (Last 20 Years)

Critical dfinity CVEs (CVSS ≥ 9) Over 20 Years

CVSS Stats

Average CVSS: 0.0

Max CVSS: 0

Critical CVEs (≥9): 0

CVSS Range vs. Count

Range Count
0.0-3.9 2
4.0-6.9 0
7.0-8.9 0
9.0-10.0 0

CVSS Distribution Chart

Top 5 Highest CVSS dfinity CVEs

These are the five CVEs with the highest CVSS scores for dfinity, sorted by severity first and recency.

All CVEs for dfinity

CVE-2024-7884 dfinity vulnerability CVSS: 0 05 Sep 2024, 13:15 UTC

When a canister method is called via ic_cdk::call* , a new Future CallFuture is created and can be awaited by the caller to get the execution result. Internally, the state of the Future is tracked and stored in a struct called CallFutureState. A bug in the polling implementation of the CallFuture allows multiple references to be held for this internal state and not all references were dropped before the Future is resolved. Since we have unaccounted references held, a copy of the internal state ended up being persisted in the canister's heap and thus causing a memory leak. Impact Canisters built in Rust with ic_cdk and ic_cdk_timers are affected. If these canisters call a canister method, use timers or heartbeat, they will likely leak a small amount of memory on every such operation. In the worst case, this could lead to heap memory exhaustion triggered by an attacker. Motoko based canisters are not affected by the bug. PatchesThe patch has been backported to all minor versions between >= 0.8.0, <= 0.15.0. The patched versions available are 0.8.2, 0.9.3, 0.10.1, 0.11.6, 0.12.2, 0.13.5, 0.14.1, 0.15.1 and their previous versions have been yanked. WorkaroundsThere are no known workarounds at the moment. Developers are recommended to upgrade their canister as soon as possible to the latest available patched version of ic_cdk to avoid running out of Wasm heap memory. Upgrading the canisters (without updating `ic_cdk`) also frees the leaked memory but it's only a temporary solution.

CVE-2023-6245 dfinity vulnerability CVSS: 0 08 Dec 2023, 15:15 UTC

The Candid library causes a Denial of Service while parsing a specially crafted payload with 'empty' data type. For example, if the payload is `record { * ; empty }` and the canister interface expects `record { * }` then the Rust candid decoder treats empty as an extra field required by the type. The problem with the type empty is that the candid Rust library wrongly categorizes empty as a recoverable error when skipping the field and thus causing an infinite decoding loop. Canisters using affected versions of candid are exposed to denial of service by causing the decoding to run indefinitely until the canister traps due to reaching maximum instruction limit per execution round. Repeated exposure to the payload will result in degraded performance of the canister. Note: Canisters written in Motoko are unaffected.