cowrie CVE Vulnerabilities & Metrics

Focus on cowrie vulnerabilities and metrics.

Last updated: 16 Jan 2026, 23:25 UTC

About cowrie Security Exposure

This page consolidates all known Common Vulnerabilities and Exposures (CVEs) associated with cowrie. We track both calendar-based metrics (using fixed periods) and rolling metrics (using gliding windows) to give you a comprehensive view of security trends and risk evolution. Use these insights to assess risk and plan your patching strategy.

For a broader perspective on cybersecurity threats, explore the comprehensive list of CVEs by vendor and product. Stay updated on critical vulnerabilities affecting major software and hardware providers.

Global CVE Overview

Total cowrie CVEs: 1
Earliest CVE date: 31 Dec 2025, 22:15 UTC
Latest CVE date: 31 Dec 2025, 22:15 UTC

Latest CVE reference: CVE-2025-34469

Rolling Stats

30-day Count (Rolling): 1
365-day Count (Rolling): 1

Calendar-based Variation

Calendar-based Variation compares a fixed calendar period (e.g., this month versus the same month last year), while Rolling Growth Rate uses a continuous window (e.g., last 30 days versus the previous 30 days) to capture trends independent of calendar boundaries.

Variations & Growth

Month Variation (Calendar): 0%
Year Variation (Calendar): 0%

Month Growth Rate (30-day Rolling): 0.0%
Year Growth Rate (365-day Rolling): 0.0%

Monthly CVE Trends (current vs previous Year)

Annual CVE Trends (Last 20 Years)

Critical cowrie CVEs (CVSS ≥ 9) Over 20 Years

CVSS Stats

Average CVSS: 0.0

Max CVSS: 0

Critical CVEs (≥9): 0

CVSS Range vs. Count

Range Count
0.0-3.9 1
4.0-6.9 0
7.0-8.9 0
9.0-10.0 0

CVSS Distribution Chart

Top 5 Highest CVSS cowrie CVEs

These are the five CVEs with the highest CVSS scores for cowrie, sorted by severity first and recency.

All CVEs for cowrie

CVE-2025-34469 cowrie vulnerability CVSS: 0 31 Dec 2025, 22:15 UTC

Cowrie versions prior to 2.9.0 contain a server-side request forgery (SSRF) vulnerability in the emulated shell implementation of wget and curl. In the default emulated shell configuration, these command emulations perform real outbound HTTP requests to attacker-supplied destinations. Because no outbound request rate limiting was enforced, unauthenticated remote attackers could repeatedly invoke these commands to generate unbounded HTTP traffic toward arbitrary third-party targets, allowing the Cowrie honeypot to be abused as a denial-of-service amplification node and masking the attacker’s true source address behind the honeypot’s IP.