CVE-2026-23011 Vulnerability Analysis & Exploit Details

CVE-2026-23011
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2026-23011 Details

Status: Received on 25 Jan 2026, 15:15 UTC

Published on: 25 Jan 2026, 15:15 UTC

CVSS Release:

CVE-2026-23011 Vulnerability Summary

CVE-2026-23011: In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_gre: make ipgre_header() robust Analog to commit db5b4e39c4e6 ("ip6_gre: make ip6gre_header() robust") Over the years, syzbot found many ways to crash the kernel in ipgre_header() [1]. This involves team or bonding drivers ability to dynamically change their dev->needed_headroom and/or dev->hard_header_len In this particular crash mld_newpack() allocated an skb with a too small reserve/headroom, and by the time mld_sendpack() was called, syzbot managed to attach an ipgre device. [1] skbuff: skb_under_panic: text:ffffffff89ea3cb7 len:2030915468 put:2030915372 head:ffff888058b43000 data:ffff887fdfa6e194 tail:0x120 end:0x6c0 dev:team0 kernel BUG at net/core/skbuff.c:213 ! Oops: invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 1 UID: 0 PID: 1322 Comm: kworker/1:9 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: mld mld_ifc_work RIP: 0010:skb_panic+0x157/0x160 net/core/skbuff.c:213 Call Trace: <TASK> skb_under_panic net/core/skbuff.c:223 [inline] skb_push+0xc3/0xe0 net/core/skbuff.c:2641 ipgre_header+0x67/0x290 net/ipv4/ip_gre.c:897 dev_hard_header include/linux/netdevice.h:3436 [inline] neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618 NF_HOOK_COND include/linux/netfilter.h:307 [inline] ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247 NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318 mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246

Assessing the Risk of CVE-2026-23011

Access Complexity Graph

The exploitability of CVE-2026-23011 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2026-23011

No exploitability data is available for CVE-2026-23011.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2026-23011, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2026-23011, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2026-23011 does not compromise confidentiality.
  • Integrity: None
    CVE-2026-23011 does not impact data integrity.
  • Availability: None
    CVE-2026-23011 does not affect system availability.

CVE-2026-23011 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2026-23011: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-23013 – In the Linux kernel, the following vulnerability has been resolved: net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback octep_vf_requ...
  • CVE-2026-23012 – In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: remove call_control in inactive contexts If damon_call() is ex...
  • CVE-2026-23011 – In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_gre: make ipgre_header() robust Analog to commit db5b4e39c4e6 ("ip6_...
  • CVE-2026-23010 – In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix use-after-free in inet6_addr_del(). syzbot reported use-after-free ...
  • CVE-2026-23009 – In the Linux kernel, the following vulnerability has been resolved: xhci: sideband: don't dereference freed ring when removing sideband endpoint ...