CVE-2026-23004 Vulnerability Analysis & Exploit Details

CVE-2026-23004
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2026-23004 Details

Status: Awaiting Analysis

Last updated: 🕒 26 Jan 2026, 15:03 UTC
Originally published on: 🕒 25 Jan 2026, 15:15 UTC

CVSS Release:

CVE-2026-23004 Vulnerability Summary

CVE-2026-23004: In the Linux kernel, the following vulnerability has been resolved: dst: fix races in rt6_uncached_list_del() and rt_del_uncached_list() syzbot was able to crash the kernel in rt6_uncached_list_flush_dev() in an interesting way [1] Crash happens in list_del_init()/INIT_LIST_HEAD() while writing list->prev, while the prior write on list->next went well. static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); // This went well WRITE_ONCE(list->prev, list); // Crash, @list has been freed. } Issue here is that rt6_uncached_list_del() did not attempt to lock ul->lock, as list_empty(&rt->dst.rt_uncached) returned true because the WRITE_ONCE(list->next, list) happened on the other CPU. We might use list_del_init_careful() and list_empty_careful(), or make sure rt6_uncached_list_del() always grabs the spinlock whenever rt->dst.rt_uncached_list has been set. A similar fix is neeed for IPv4. [1] BUG: KASAN: slab-use-after-free in INIT_LIST_HEAD include/linux/list.h:46 [inline] BUG: KASAN: slab-use-after-free in list_del_init include/linux/list.h:296 [inline] BUG: KASAN: slab-use-after-free in rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline] BUG: KASAN: slab-use-after-free in rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020 Write of size 8 at addr ffff8880294cfa78 by task kworker/u8:14/3450 CPU: 0 UID: 0 PID: 3450 Comm: kworker/u8:14 Tainted: G L syzkaller #0 PREEMPT_{RT,(full)} Tainted: [L]=SOFTLOCKUP Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: netns cleanup_net Call Trace: <TASK> dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 INIT_LIST_HEAD include/linux/list.h:46 [inline] list_del_init include/linux/list.h:296 [inline] rt6_uncached_list_flush_dev net/ipv6/route.c:191 [inline] rt6_disable_ip+0x633/0x730 net/ipv6/route.c:5020 addrconf_ifdown+0x143/0x18a0 net/ipv6/addrconf.c:3853 addrconf_notify+0x1bc/0x1050 net/ipv6/addrconf.c:-1 notifier_call_chain+0x19d/0x3a0 kernel/notifier.c:85 call_netdevice_notifiers_extack net/core/dev.c:2268 [inline] call_netdevice_notifiers net/core/dev.c:2282 [inline] netif_close_many+0x29c/0x410 net/core/dev.c:1785 unregister_netdevice_many_notify+0xb50/0x2330 net/core/dev.c:12353 ops_exit_rtnl_list net/core/net_namespace.c:187 [inline] ops_undo_list+0x3dc/0x990 net/core/net_namespace.c:248 cleanup_net+0x4de/0x7b0 net/core/net_namespace.c:696 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 </TASK> Allocated by task 803: kasan_save_stack mm/kasan/common.c:57 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:78 unpoison_slab_object mm/kasan/common.c:340 [inline] __kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:366 kasan_slab_alloc include/linux/kasan.h:253 [inline] slab_post_alloc_hook mm/slub.c:4953 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_noprof+0x18d/0x6c0 mm/slub.c:5270 dst_alloc+0x105/0x170 net/core/dst.c:89 ip6_dst_alloc net/ipv6/route.c:342 [inline] icmp6_dst_alloc+0x75/0x460 net/ipv6/route.c:3333 mld_sendpack+0x683/0xe60 net/ipv6/mcast.c:1844 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr ---truncated---

Assessing the Risk of CVE-2026-23004

Access Complexity Graph

The exploitability of CVE-2026-23004 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2026-23004

No exploitability data is available for CVE-2026-23004.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2026-23004, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2026-23004, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2026-23004 does not compromise confidentiality.
  • Integrity: None
    CVE-2026-23004 does not impact data integrity.
  • Availability: None
    CVE-2026-23004 does not affect system availability.

CVE-2026-23004 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2026-23004: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-23039 – In the Linux kernel, the following vulnerability has been resolved: drm/gud: fix NULL fb and crtc dereferences on USB disconnect On disconnect dr...
  • CVE-2026-23038 – In the Linux kernel, the following vulnerability has been resolved: pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node() In nfs4_ff_a...
  • CVE-2026-23037 – In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: allow partial RX URB allocation to succeed When es58x_alloc_...
  • CVE-2026-23036 – In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before iget_failed() in btrfs_read_locked_inode() In btrf...
  • CVE-2026-23035 – In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv mlx5e_priv is ...