CVE-2026-22981 Vulnerability Analysis & Exploit Details

CVE-2026-22981
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2026-22981 Details

Status: Awaiting Analysis

Last updated: 🕒 26 Jan 2026, 15:03 UTC
Originally published on: 🕓 23 Jan 2026, 16:15 UTC

Time between publication and last update: 2 days

CVSS Release:

CVE-2026-22981 Vulnerability Summary

CVE-2026-22981: In the Linux kernel, the following vulnerability has been resolved: idpf: detach and close netdevs while handling a reset Protect the reset path from callbacks by setting the netdevs to detached state and close any netdevs in UP state until the reset handling has completed. During a reset, the driver will de-allocate resources for the vport, and there is no guarantee that those will recover, which is why the existing vport_ctrl_lock does not provide sufficient protection. idpf_detach_and_close() is called right before reset handling. If the reset handling succeeds, the netdevs state is recovered via call to idpf_attach_and_open(). If the reset handling fails the netdevs remain down. The detach/down calls are protected with RTNL lock to avoid racing with callbacks. On the recovery side the attach can be done without holding the RTNL lock as there are no callbacks expected at that point, due to detach/close always being done first in that flow. The previous logic restoring the netdevs state based on the IDPF_VPORT_UP_REQUESTED flag in the init task is not needed anymore, hence the removal of idpf_set_vport_state(). The IDPF_VPORT_UP_REQUESTED is still being used to restore the state of the netdevs following the reset, but has no use outside of the reset handling flow. idpf_init_hard_reset() is converted to void, since it was used as such and there is no error handling being done based on its return value. Before this change, invoking hard and soft resets simultaneously will cause the driver to lose the vport state: ip -br a <inf> UP echo 1 > /sys/class/net/ens801f0/device/reset& \ ethtool -L ens801f0 combined 8 ip -br a <inf> DOWN ip link set <inf> up ip -br a <inf> DOWN Also in case of a failure in the reset path, the netdev is left exposed to external callbacks, while vport resources are not initialized, leading to a crash on subsequent ifup/down: [408471.398966] idpf 0000:83:00.0: HW reset detected [408471.411744] idpf 0000:83:00.0: Device HW Reset initiated [408472.277901] idpf 0000:83:00.0: The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x2 [408508.125551] BUG: kernel NULL pointer dereference, address: 0000000000000078 [408508.126112] #PF: supervisor read access in kernel mode [408508.126687] #PF: error_code(0x0000) - not-present page [408508.127256] PGD 2aae2f067 P4D 0 [408508.127824] Oops: Oops: 0000 [#1] SMP NOPTI ... [408508.130871] RIP: 0010:idpf_stop+0x39/0x70 [idpf] ... [408508.139193] Call Trace: [408508.139637] <TASK> [408508.140077] __dev_close_many+0xbb/0x260 [408508.140533] __dev_change_flags+0x1cf/0x280 [408508.140987] netif_change_flags+0x26/0x70 [408508.141434] dev_change_flags+0x3d/0xb0 [408508.141878] devinet_ioctl+0x460/0x890 [408508.142321] inet_ioctl+0x18e/0x1d0 [408508.142762] ? _copy_to_user+0x22/0x70 [408508.143207] sock_do_ioctl+0x3d/0xe0 [408508.143652] sock_ioctl+0x10e/0x330 [408508.144091] ? find_held_lock+0x2b/0x80 [408508.144537] __x64_sys_ioctl+0x96/0xe0 [408508.144979] do_syscall_64+0x79/0x3d0 [408508.145415] entry_SYSCALL_64_after_hwframe+0x76/0x7e [408508.145860] RIP: 0033:0x7f3e0bb4caff

Assessing the Risk of CVE-2026-22981

Access Complexity Graph

The exploitability of CVE-2026-22981 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2026-22981

No exploitability data is available for CVE-2026-22981.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2026-22981, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2026-22981, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2026-22981 does not compromise confidentiality.
  • Integrity: None
    CVE-2026-22981 does not impact data integrity.
  • Availability: None
    CVE-2026-22981 does not affect system availability.

CVE-2026-22981 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2026-22981: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-23039 – In the Linux kernel, the following vulnerability has been resolved: drm/gud: fix NULL fb and crtc dereferences on USB disconnect On disconnect dr...
  • CVE-2026-23038 – In the Linux kernel, the following vulnerability has been resolved: pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node() In nfs4_ff_a...
  • CVE-2026-23037 – In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: allow partial RX URB allocation to succeed When es58x_alloc_...
  • CVE-2026-23036 – In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before iget_failed() in btrfs_read_locked_inode() In btrf...
  • CVE-2026-23035 – In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv mlx5e_priv is ...