CVE-2026-22976
Vulnerability Scoring
Status: Received on 21 Jan 2026, 07:16 UTC
Published on: 21 Jan 2026, 07:16 UTC
CVSS Release:
CVE-2026-22976: In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: Fix NULL deref when deactivating inactive aggregate in qfq_reset `qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class itself is active. Two qfq_class objects may point to the same leaf_qdisc. This happens when: 1. one QFQ qdisc is attached to the dev as the root qdisc, and 2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get() / qdisc_put()) and is pending to be destroyed, as in function tc_new_tfilter. When packets are enqueued through the root QFQ qdisc, the shared leaf_qdisc->q.qlen increases. At the same time, the second QFQ qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters qfq_reset() with its own q->q.qlen == 0, but its class's leaf qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate an inactive aggregate and trigger a null-deref in qfq_deactivate_agg: [ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 0.903571] #PF: supervisor write access in kernel mode [ 0.903860] #PF: error_code(0x0002) - not-present page [ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0 [ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI [ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE [ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014 [ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2)) [ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0 Code starting with the faulting instruction =========================================== 0: 0f 84 4d 01 00 00 je 0x153 6: 48 89 70 18 mov %rsi,0x18(%rax) a: 8b 4b 10 mov 0x10(%rbx),%ecx d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx 14: 48 8b 78 08 mov 0x8(%rax),%rdi 18: 48 d3 e2 shl %cl,%rdx 1b: 48 21 f2 and %rsi,%rdx 1e: 48 2b 13 sub (%rbx),%rdx 21: 48 8b 30 mov (%rax),%rsi 24: 48 d3 ea shr %cl,%rdx 27: 8b 4b 18 mov 0x18(%rbx),%ecx ... [ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246 [ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000 [ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000 [ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000 [ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880 [ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000 [ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0 [ 0.910247] PKRU: 55555554 [ 0.910391] Call Trace: [ 0.910527] <TASK> [ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485) [ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036) [ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076) [ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447) [ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958) [ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861) [ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550) [ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344) [ 0.912296] ? __alloc_skb (net/core/skbuff.c:706) [ 0.912484] netlink_sendmsg (net/netlink/af ---truncated---
The exploitability of CVE-2026-22976 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2026-22976.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2026-22976, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2026-22976, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.