CVE-2025-71117 Vulnerability Analysis & Exploit Details

CVE-2025-71117
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-71117 Details

Status: Awaiting Analysis

Published on: 14 Jan 2026, 15:16 UTC

CVSS Release:

CVE-2025-71117 Vulnerability Summary

CVE-2025-71117: In the Linux kernel, the following vulnerability has been resolved: block: Remove queue freezing from several sysfs store callbacks Freezing the request queue from inside sysfs store callbacks may cause a deadlock in combination with the dm-multipath driver and the queue_if_no_path option. Additionally, freezing the request queue slows down system boot on systems where sysfs attributes are set synchronously. Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue() calls from the store callbacks that do not strictly need these callbacks. Add the __data_racy annotation to request_queue.rq_timeout to suppress KCSAN data race reports about the rq_timeout reads. This patch may cause a small delay in applying the new settings. For all the attributes affected by this patch, I/O will complete correctly whether the old or the new value of the attribute is used. This patch affects the following sysfs attributes: * io_poll_delay * io_timeout * nomerges * read_ahead_kb * rq_affinity Here is an example of a deadlock triggered by running test srp/002 if this patch is not applied: task:multipathd Call Trace: <TASK> __schedule+0x8c1/0x1bf0 schedule+0xdd/0x270 schedule_preempt_disabled+0x1c/0x30 __mutex_lock+0xb89/0x1650 mutex_lock_nested+0x1f/0x30 dm_table_set_restrictions+0x823/0xdf0 __bind+0x166/0x590 dm_swap_table+0x2a7/0x490 do_resume+0x1b1/0x610 dev_suspend+0x55/0x1a0 ctl_ioctl+0x3a5/0x7e0 dm_ctl_ioctl+0x12/0x20 __x64_sys_ioctl+0x127/0x1a0 x64_sys_call+0xe2b/0x17d0 do_syscall_64+0x96/0x3a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> task:(udev-worker) Call Trace: <TASK> __schedule+0x8c1/0x1bf0 schedule+0xdd/0x270 blk_mq_freeze_queue_wait+0xf2/0x140 blk_mq_freeze_queue_nomemsave+0x23/0x30 queue_ra_store+0x14e/0x290 queue_attr_store+0x23e/0x2c0 sysfs_kf_write+0xde/0x140 kernfs_fop_write_iter+0x3b2/0x630 vfs_write+0x4fd/0x1390 ksys_write+0xfd/0x230 __x64_sys_write+0x76/0xc0 x64_sys_call+0x276/0x17d0 do_syscall_64+0x96/0x3a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK>

Assessing the Risk of CVE-2025-71117

Access Complexity Graph

The exploitability of CVE-2025-71117 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-71117

No exploitability data is available for CVE-2025-71117.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-71117, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-71117, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-71117 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-71117 does not impact data integrity.
  • Availability: None
    CVE-2025-71117 does not affect system availability.

CVE-2025-71117 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-71117: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-23039 – In the Linux kernel, the following vulnerability has been resolved: drm/gud: fix NULL fb and crtc dereferences on USB disconnect On disconnect dr...
  • CVE-2026-23038 – In the Linux kernel, the following vulnerability has been resolved: pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node() In nfs4_ff_a...
  • CVE-2026-23037 – In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: allow partial RX URB allocation to succeed When es58x_alloc_...
  • CVE-2026-23036 – In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before iget_failed() in btrfs_read_locked_inode() In btrf...
  • CVE-2026-23035 – In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv mlx5e_priv is ...