CVE-2025-71113
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕐 19 Jan 2026, 13:16 UTC
Originally published on: 🕒 14 Jan 2026, 15:16 UTC
Time between publication and last update: 4 days
CVSS Release:
CVE-2025-71113: In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - zero initialize memory allocated via sock_kmalloc Several crypto user API contexts and requests allocated with sock_kmalloc() were left uninitialized, relying on callers to set fields explicitly. This resulted in the use of uninitialized data in certain error paths or when new fields are added in the future. The ACVP patches also contain two user-space interface files: algif_kpp.c and algif_akcipher.c. These too rely on proper initialization of their context structures. A particular issue has been observed with the newly added 'inflight' variable introduced in af_alg_ctx by commit: 67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests") Because the context is not memset to zero after allocation, the inflight variable has contained garbage values. As a result, af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when the garbage value was interpreted as true: https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209 The check directly tests ctx->inflight without explicitly comparing against true/false. Since inflight is only ever set to true or false later, an uninitialized value has triggered -EBUSY failures. Zero-initializing memory allocated with sock_kmalloc() ensures inflight and other fields start in a known state, removing random issues caused by uninitialized data.
The exploitability of CVE-2025-71113 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-71113.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-71113, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-71113, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.