CVE-2025-69217 Vulnerability Analysis & Exploit Details

CVE-2025-69217
Vulnerability Scoring

7.7
/10
Very High Risk

Highly exploitable, CVE-2025-69217 poses a critical security risk that could lead to severe breaches.

Attack Complexity Details

  • Attack Complexity: Low
    Exploits can be performed without significant complexity or special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: Low
    Some privileges are necessary to exploit the vulnerability.
  • Scope: Changed
    Successful exploitation can impact components beyond the vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-69217 Details

Status: Awaiting Analysis

Last updated: 🕣 31 Dec 2025, 20:43 UTC
Originally published on: 🕐 30 Dec 2025, 01:15 UTC

Time between publication and last update: 1 days

CVSS Release: version 3

CVSS3 Source

security-advisories@github.com

CVSS3 Type

Secondary

CVSS3 Vector

CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:N/I:N/A:H

CVE-2025-69217 Vulnerability Summary

CVE-2025-69217: coturn is a free open source implementation of TURN and STUN Server. Versions 4.6.2r5 through 4.7.0-r4 have a bad random number generator for nonces and port randomization after refactoring. Additionally, random numbers aren't generated with openssl's RAND_bytes but libc's random() (if it's not running on Windows). When fetching about 50 sequential nonces (i.e., through sending 50 unauthenticated allocations requests) it is possible to completely reconstruct the current state of the random number generator, thereby predicting the next nonce. This allows authentication while spoofing IPs. An attacker can send authenticated messages without ever receiving the responses, including the nonce (requires knowledge of the credentials, which is e.g., often the case in IoT settings). Since the port randomization is deterministic given the pseudorandom seed, an attacker can exactly reconstruct the ports and, hence predict the randomization of the ports. If an attacker allocates a relay port, they know the current port, and they are able to predict the next relay port (at least if it is not used before). Commit 11fc465f4bba70bb0ad8aae17d6c4a63a29917d9 contains a fix.

Assessing the Risk of CVE-2025-69217

Access Complexity Graph

The exploitability of CVE-2025-69217 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-69217

CVE-2025-69217 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-69217, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-69217, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-69217 has no significant impact on data confidentiality.
  • Integrity: None
    CVE-2025-69217 poses no threat to data integrity.
  • Availability: High
    CVE-2025-69217 can disrupt system operations, potentially causing complete denial of service (DoS).

CVE-2025-69217 References

External References

CWE Common Weakness Enumeration

CWE-338

Protect Your Infrastructure against CVE-2025-69217: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-23039 – In the Linux kernel, the following vulnerability has been resolved: drm/gud: fix NULL fb and crtc dereferences on USB disconnect On disconnect dr...
  • CVE-2026-23038 – In the Linux kernel, the following vulnerability has been resolved: pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node() In nfs4_ff_a...
  • CVE-2026-23037 – In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: allow partial RX URB allocation to succeed When es58x_alloc_...
  • CVE-2026-23036 – In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before iget_failed() in btrfs_read_locked_inode() In btrf...
  • CVE-2026-23035 – In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv mlx5e_priv is ...