CVE-2025-68807
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕓 14 Jan 2026, 16:26 UTC
Originally published on: 🕓 13 Jan 2026, 16:16 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2025-68807: In the Linux kernel, the following vulnerability has been resolved: block: fix race between wbt_enable_default and IO submission When wbt_enable_default() is moved out of queue freezing in elevator_change(), it can cause the wbt inflight counter to become negative (-1), leading to hung tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter is in an inconsistent state. The issue occurs because wbt_enable_default() could race with IO submission, allowing the counter to be decremented before proper initialization. This manifests as: rq_wait[0]: inflight: -1 has_waiters: True rwb_enabled() checks the state, which can be updated exactly between wbt_wait() (rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter will become negative. And results in hung task warnings like: task:kworker/u24:39 state:D stack:0 pid:14767 Call Trace: rq_qos_wait+0xb4/0x150 wbt_wait+0xa9/0x100 __rq_qos_throttle+0x24/0x40 blk_mq_submit_bio+0x672/0x7b0 ... Fix this by: 1. Splitting wbt_enable_default() into: - __wbt_enable_default(): Returns true if wbt_init() should be called - wbt_enable_default(): Wrapper for existing callers (no init) - wbt_init_enable_default(): New function that checks and inits WBT 2. Using wbt_init_enable_default() in blk_register_queue() to ensure proper initialization during queue registration 3. Move wbt_init() out of wbt_enable_default() which is only for enabling disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the original lock warning can be avoided. 4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling code since it's no longer needed This ensures WBT is properly initialized before any IO can be submitted, preventing the counter from going negative.
The exploitability of CVE-2025-68807 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-68807.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-68807, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-68807, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.