CVE-2025-68358 Vulnerability Analysis & Exploit Details

CVE-2025-68358
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-68358 Details

Status: Received on 24 Dec 2025, 11:15 UTC

Published on: 24 Dec 2025, 11:15 UTC

CVSS Release:

CVE-2025-68358 Vulnerability Summary

CVE-2025-68358: In the Linux kernel, the following vulnerability has been resolved: btrfs: fix racy bitfield write in btrfs_clear_space_info_full() From the memory-barriers.txt document regarding memory barrier ordering guarantees: (*) These guarantees do not apply to bitfields, because compilers often generate code to modify these using non-atomic read-modify-write sequences. Do not attempt to use bitfields to synchronize parallel algorithms. (*) Even in cases where bitfields are protected by locks, all fields in a given bitfield must be protected by one lock. If two fields in a given bitfield are protected by different locks, the compiler's non-atomic read-modify-write sequences can cause an update to one field to corrupt the value of an adjacent field. btrfs_space_info has a bitfield sharing an underlying word consisting of the fields full, chunk_alloc, and flush: struct btrfs_space_info { struct btrfs_fs_info * fs_info; /* 0 8 */ struct btrfs_space_info * parent; /* 8 8 */ ... int clamp; /* 172 4 */ unsigned int full:1; /* 176: 0 4 */ unsigned int chunk_alloc:1; /* 176: 1 4 */ unsigned int flush:1; /* 176: 2 4 */ ... Therefore, to be safe from parallel read-modify-writes losing a write to one of the bitfield members protected by a lock, all writes to all the bitfields must use the lock. They almost universally do, except for btrfs_clear_space_info_full() which iterates over the space_infos and writes out found->full = 0 without a lock. Imagine that we have one thread completing a transaction in which we finished deleting a block_group and are thus calling btrfs_clear_space_info_full() while simultaneously the data reclaim ticket infrastructure is running do_async_reclaim_data_space(): T1 T2 btrfs_commit_transaction btrfs_clear_space_info_full data_sinfo->full = 0 READ: full:0, chunk_alloc:0, flush:1 do_async_reclaim_data_space(data_sinfo) spin_lock(&space_info->lock); if(list_empty(tickets)) space_info->flush = 0; READ: full: 0, chunk_alloc:0, flush:1 MOD/WRITE: full: 0, chunk_alloc:0, flush:0 spin_unlock(&space_info->lock); return; MOD/WRITE: full:0, chunk_alloc:0, flush:1 and now data_sinfo->flush is 1 but the reclaim worker has exited. This breaks the invariant that flush is 0 iff there is no work queued or running. Once this invariant is violated, future allocations that go into __reserve_bytes() will add tickets to space_info->tickets but will see space_info->flush is set to 1 and not queue the work. After this, they will block forever on the resulting ticket, as it is now impossible to kick the worker again. I also confirmed by looking at the assembly of the affected kernel that it is doing RMW operations. For example, to set the flush (3rd) bit to 0, the assembly is: andb $0xfb,0x60(%rbx) and similarly for setting the full (1st) bit to 0: andb $0xfe,-0x20(%rax) So I think this is really a bug on practical systems. I have observed a number of systems in this exact state, but am currently unable to reproduce it. Rather than leaving this footgun lying around for the future, take advantage of the fact that there is room in the struct anyway, and that it is already quite large and simply change the three bitfield members to bools. This avoids writes to space_info->full having any effect on ---truncated---

Assessing the Risk of CVE-2025-68358

Access Complexity Graph

The exploitability of CVE-2025-68358 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-68358

No exploitability data is available for CVE-2025-68358.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-68358, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-68358, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-68358 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-68358 does not impact data integrity.
  • Availability: None
    CVE-2025-68358 does not affect system availability.

CVE-2025-68358 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-68358: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-15166 – A vulnerability was found in itsourcecode Online Cake Ordering System 1.0. This affects an unknown function of the file /updatesupplier.php?action=...
  • CVE-2025-15165 – A vulnerability has been found in itsourcecode Online Cake Ordering System 1.0. The impacted element is an unknown function of the file /updatecust...
  • CVE-2025-15164 – A security flaw has been discovered in Tenda WH450 1.0.0.18. This affects an unknown part of the file /goform/SafeMacFilter. The manipulation of th...
  • CVE-2025-15163 – A vulnerability was identified in Tenda WH450 1.0.0.18. Affected by this issue is some unknown functionality of the file /goform/SafeEmailFilter. T...
  • CVE-2025-15067 – Unrestricted Upload of File with Dangerous Type vulnerability in Innorix Innorix WP allows Upload a Web Shell to a Web Server.This issue affects In...