CVE-2025-68335 Vulnerability Analysis & Exploit Details

CVE-2025-68335
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-68335 Details

Status: Awaiting Analysis

Last updated: 🕐 19 Jan 2026, 13:16 UTC
Originally published on: 🕔 22 Dec 2025, 17:16 UTC

Time between publication and last update: 27 days

CVSS Release:

CVE-2025-68335 Vulnerability Summary

CVE-2025-68335: In the Linux kernel, the following vulnerability has been resolved: comedi: pcl818: fix null-ptr-deref in pcl818_ai_cancel() Syzbot identified an issue [1] in pcl818_ai_cancel(), which stems from the fact that in case of early device detach via pcl818_detach(), subdevice dev->read_subdev may not have initialized its pointer to &struct comedi_async as intended. Thus, any such dereferencing of &s->async->cmd will lead to general protection fault and kernel crash. Mitigate this problem by removing a call to pcl818_ai_cancel() from pcl818_detach() altogether. This way, if the subdevice setups its support for async commands, everything async-related will be handled via subdevice's own ->cancel() function in comedi_device_detach_locked() even before pcl818_detach(). If no support for asynchronous commands is provided, there is no need to cancel anything either. [1] Syzbot crash: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f] CPU: 1 UID: 0 PID: 6050 Comm: syz.0.18 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 RIP: 0010:pcl818_ai_cancel+0x69/0x3f0 drivers/comedi/drivers/pcl818.c:762 ... Call Trace: <TASK> pcl818_detach+0x66/0xd0 drivers/comedi/drivers/pcl818.c:1115 comedi_device_detach_locked+0x178/0x750 drivers/comedi/drivers.c:207 do_devconfig_ioctl drivers/comedi/comedi_fops.c:848 [inline] comedi_unlocked_ioctl+0xcde/0x1020 drivers/comedi/comedi_fops.c:2178 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] ...

Assessing the Risk of CVE-2025-68335

Access Complexity Graph

The exploitability of CVE-2025-68335 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-68335

No exploitability data is available for CVE-2025-68335.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-68335, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-68335, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-68335 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-68335 does not impact data integrity.
  • Availability: None
    CVE-2025-68335 does not affect system availability.

CVE-2025-68335 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-68335: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-23039 – In the Linux kernel, the following vulnerability has been resolved: drm/gud: fix NULL fb and crtc dereferences on USB disconnect On disconnect dr...
  • CVE-2026-23038 – In the Linux kernel, the following vulnerability has been resolved: pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node() In nfs4_ff_a...
  • CVE-2026-23037 – In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: allow partial RX URB allocation to succeed When es58x_alloc_...
  • CVE-2026-23036 – In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before iget_failed() in btrfs_read_locked_inode() In btrf...
  • CVE-2026-23035 – In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Pass netdev to mlx5e_destroy_netdev instead of priv mlx5e_priv is ...