CVE-2025-68263
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕒 18 Dec 2025, 15:08 UTC
Originally published on: 🕒 16 Dec 2025, 15:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2025-68263: In the Linux kernel, the following vulnerability has been resolved: ksmbd: ipc: fix use-after-free in ipc_msg_send_request ipc_msg_send_request() waits for a generic netlink reply using an ipc_msg_table_entry on the stack. The generic netlink handler (handle_generic_event()/handle_response()) fills entry->response under ipc_msg_table_lock, but ipc_msg_send_request() used to validate and free entry->response without holding the same lock. Under high concurrency this allows a race where handle_response() is copying data into entry->response while ipc_msg_send_request() has just freed it, leading to a slab-use-after-free reported by KASAN in handle_generic_event(): BUG: KASAN: slab-use-after-free in handle_generic_event+0x3c4/0x5f0 [ksmbd] Write of size 12 at addr ffff888198ee6e20 by task pool/109349 ... Freed by task: kvfree ipc_msg_send_request [ksmbd] ksmbd_rpc_open -> ksmbd_session_rpc_open [ksmbd] Fix by: - Taking ipc_msg_table_lock in ipc_msg_send_request() while validating entry->response, freeing it when invalid, and removing the entry from ipc_msg_table. - Returning the final entry->response pointer to the caller only after the hash entry is removed under the lock. - Returning NULL in the error path, preserving the original API semantics. This makes all accesses to entry->response consistent with handle_response(), which already updates and fills the response buffer under ipc_msg_table_lock, and closes the race that allowed the UAF.
The exploitability of CVE-2025-68263 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-68263.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-68263, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-68263, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.