CVE-2025-68257
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕒 18 Dec 2025, 15:08 UTC
Originally published on: 🕒 16 Dec 2025, 15:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2025-68257: In the Linux kernel, the following vulnerability has been resolved: comedi: check device's attached status in compat ioctls Syzbot identified an issue [1] that crashes kernel, seemingly due to unexistent callback dev->get_valid_routes(). By all means, this should not occur as said callback must always be set to get_zero_valid_routes() in __comedi_device_postconfig(). As the crash seems to appear exclusively in i386 kernels, at least, judging from [1] reports, the blame lies with compat versions of standard IOCTL handlers. Several of them are modified and do not use comedi_unlocked_ioctl(). While functionality of these ioctls essentially copy their original versions, they do not have required sanity check for device's attached status. This, in turn, leads to a possibility of calling select IOCTLs on a device that has not been properly setup, even via COMEDI_DEVCONFIG. Doing so on unconfigured devices means that several crucial steps are missed, for instance, specifying dev->get_valid_routes() callback. Fix this somewhat crudely by ensuring device's attached status before performing any ioctls, improving logic consistency between modern and compat functions. [1] Syzbot report: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... CR2: ffffffffffffffd6 CR3: 000000006c717000 CR4: 0000000000352ef0 Call Trace: <TASK> get_valid_routes drivers/comedi/comedi_fops.c:1322 [inline] parse_insn+0x78c/0x1970 drivers/comedi/comedi_fops.c:1401 do_insnlist_ioctl+0x272/0x700 drivers/comedi/comedi_fops.c:1594 compat_insnlist drivers/comedi/comedi_fops.c:3208 [inline] comedi_compat_ioctl+0x810/0x990 drivers/comedi/comedi_fops.c:3273 __do_compat_sys_ioctl fs/ioctl.c:695 [inline] __se_compat_sys_ioctl fs/ioctl.c:638 [inline] __ia32_compat_sys_ioctl+0x242/0x370 fs/ioctl.c:638 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] ...
The exploitability of CVE-2025-68257 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-68257.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-68257, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-68257, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.