CVE-2025-68236
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕒 18 Dec 2025, 15:08 UTC
Originally published on: 🕑 16 Dec 2025, 14:15 UTC
Time between publication and last update: 2 days
CVSS Release:
CVE-2025-68236: In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: ufs-qcom: Fix UFS OCP issue during UFS power down (PC=3) According to UFS specifications, the power-off sequence for a UFS device includes: - Sending an SSU command with Power_Condition=3 and await a response. - Asserting RST_N low. - Turning off REF_CLK. - Turning off VCC. - Turning off VCCQ/VCCQ2. As part of ufs shutdown, after the SSU command completion, asserting hardware reset (HWRST) triggers the device firmware to wake up and execute its reset routine. This routine initializes hardware blocks and takes a few milliseconds to complete. During this time, the ICCQ draws a large current. This large ICCQ current may cause issues for the regulator which is supplying power to UFS, because the turn off request from UFS driver to the regulator framework will be immediately followed by low power mode(LPM) request by regulator framework. This is done by framework because UFS which is the only client is requesting for disable. So if the rail is still in the process of shutting down while ICCQ exceeds LPM current thresholds, and LPM mode is activated in hardware during this state, it may trigger an overcurrent protection (OCP) fault in the regulator. To prevent this, a 10ms delay is added after asserting HWRST. This allows the reset operation to complete while power rails remain active and in high-power mode. Currently there is no way for Host to query whether the reset is completed or not and hence this the delay is based on experiments with Qualcomm UFS controllers across multiple UFS vendors.
The exploitability of CVE-2025-68236 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-68236.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-68236, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-68236, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.