CVE-2025-66628 Vulnerability Analysis & Exploit Details

CVE-2025-66628
Vulnerability Scoring

7.5
/10
Very High Risk

Highly exploitable, CVE-2025-66628 poses a critical security risk that could lead to severe breaches.

Attack Complexity Details

  • Attack Complexity: Low
    Exploits can be performed without significant complexity or special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: None
    No privileges are required for exploitation.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-66628 Details

Status: Awaiting Analysis

Last updated: 🕒 12 Dec 2025, 15:18 UTC
Originally published on: 🕙 10 Dec 2025, 22:16 UTC

Time between publication and last update: 1 days

CVSS Release: version 3

CVSS3 Source

security-advisories@github.com

CVSS3 Type

Secondary

CVSS3 Vector

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

CVE-2025-66628 Vulnerability Summary

CVE-2025-66628: ImageMagick is a software suite to create, edit, compose, or convert bitmap images. In versions 7.1.2-9 and prior, the TIM (PSX TIM) image parser contains a critical integer overflow vulnerability in its ReadTIMImage function (coders/tim.c). The code reads width and height (16-bit values) from the file header and calculates image_size = 2 * width * height without checking for overflow. On 32-bit systems (or where size_t is 32-bit), this calculation can overflow if width and height are large (e.g., 65535), wrapping around to a small value. This results in a small heap allocation via AcquireQuantumMemory and later operations relying on the dimensions can trigger an out of bounds read. This issue is fixed in version 7.1.2-10.

Assessing the Risk of CVE-2025-66628

Access Complexity Graph

The exploitability of CVE-2025-66628 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-66628

With low attack complexity and no required privileges, CVE-2025-66628 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-66628, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-66628, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: High
    Exploiting CVE-2025-66628 can result in unauthorized access to sensitive data, severely compromising data privacy.
  • Integrity: None
    CVE-2025-66628 poses no threat to data integrity.
  • Availability: None
    CVE-2025-66628 does not impact system availability.

CVE-2025-66628 References

External References

CWE Common Weakness Enumeration

CWE-125

CAPEC Common Attack Pattern Enumeration and Classification

  • Overread Buffers CAPEC-540 An adversary attacks a target by providing input that causes an application to read beyond the boundary of a defined buffer. This typically occurs when a value influencing where to start or stop reading is set to reflect positions outside of the valid memory location of the buffer. This type of attack may result in exposure of sensitive information, a system crash, or arbitrary code execution.

Protect Your Infrastructure against CVE-2025-66628: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-15165 – A vulnerability has been found in itsourcecode Online Cake Ordering System 1.0. The impacted element is an unknown function of the file /updatecust...
  • CVE-2025-15164 – A security flaw has been discovered in Tenda WH450 1.0.0.18. This affects an unknown part of the file /goform/SafeMacFilter. The manipulation of th...
  • CVE-2025-15163 – A vulnerability was identified in Tenda WH450 1.0.0.18. Affected by this issue is some unknown functionality of the file /goform/SafeEmailFilter. T...
  • CVE-2025-15067 – Unrestricted Upload of File with Dangerous Type vulnerability in Innorix Innorix WP allows Upload a Web Shell to a Web Server.This issue affects In...
  • CVE-2025-15066 – Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal'), Missing Authorization vulnerability in Innorix WP allows Path Trave...