CVE-2025-47424 Vulnerability Analysis & Exploit Details

CVE-2025-47424
Vulnerability Scoring

7.1
/10
Very High Risk

Highly exploitable, CVE-2025-47424 poses a critical security risk that could lead to severe breaches.

Attack Complexity Details

  • Attack Complexity: High
    Exploits require significant effort and special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: None
    No privileges are required for exploitation.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: Required
    User interaction is necessary for successful exploitation.

CVE-2025-47424 Details

Status: Received on 09 May 2025, 23:15 UTC

Last updated: 🕛 10 May 2025, 00:15 UTC
Originally published on: 🕚 09 May 2025, 23:15 UTC

CVSS Release: version 3

CVSS3 Source

cve@mitre.org

CVSS3 Type

Secondary

CVSS3 Vector

CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:L

CVE-2025-47424 Vulnerability Summary

CVE-2025-47424: Retool (self-hosted) before 3.196.0 allows Host header injection. When the BASE_DOMAIN environment variable is not set, the HTTP host header can be manipulated.

Assessing the Risk of CVE-2025-47424

Access Complexity Graph

The exploitability of CVE-2025-47424 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-47424

CVE-2025-47424 presents a challenge to exploit due to its high attack complexity, but the absence of privilege requirements still makes it a viable target for skilled attackers. A thorough security review is advised.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-47424, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-47424, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: High
    Exploiting CVE-2025-47424 can result in unauthorized access to sensitive data, severely compromising data privacy.
  • Integrity: High
    CVE-2025-47424 could allow unauthorized modifications to data, potentially affecting system reliability and trust.
  • Availability: Low
    CVE-2025-47424 may slightly degrade system performance without fully affecting service availability.

CVE-2025-47424 References

External References

CWE Common Weakness Enumeration

CWE-348

CAPEC Common Attack Pattern Enumeration and Classification

  • Cache Poisoning CAPEC-141 An attacker exploits the functionality of cache technologies to cause specific data to be cached that aids the attackers' objectives. This describes any attack whereby an attacker places incorrect or harmful material in cache. The targeted cache can be an application's cache (e.g. a web browser cache) or a public cache (e.g. a DNS or ARP cache). Until the cache is refreshed, most applications or clients will treat the corrupted cache value as valid. This can lead to a wide range of exploits including redirecting web browsers towards sites that install malware and repeatedly incorrect calculations based on the incorrect value.
  • DNS Cache Poisoning CAPEC-142 A domain name server translates a domain name (such as www.example.com) into an IP address that Internet hosts use to contact Internet resources. An adversary modifies a public DNS cache to cause certain names to resolve to incorrect addresses that the adversary specifies. The result is that client applications that rely upon the targeted cache for domain name resolution will be directed not to the actual address of the specified domain name but to some other address. Adversaries can use this to herd clients to sites that install malware on the victim's computer or to masquerade as part of a Pharming attack.
  • User-Controlled Filename CAPEC-73 An attack of this type involves an adversary inserting malicious characters (such as a XSS redirection) into a filename, directly or indirectly that is then used by the target software to generate HTML text or other potentially executable content. Many websites rely on user-generated content and dynamically build resources like files, filenames, and URL links directly from user supplied data. In this attack pattern, the attacker uploads code that can execute in the client browser and/or redirect the client browser to a site that the attacker owns. All XSS attack payload variants can be used to pass and exploit these vulnerabilities.
  • Manipulating Web Input to File System Calls CAPEC-76 An attacker manipulates inputs to the target software which the target software passes to file system calls in the OS. The goal is to gain access to, and perhaps modify, areas of the file system that the target software did not intend to be accessible.
  • AJAX Footprinting CAPEC-85 This attack utilizes the frequent client-server roundtrips in Ajax conversation to scan a system. While Ajax does not open up new vulnerabilities per se, it does optimize them from an attacker point of view. A common first step for an attacker is to footprint the target environment to understand what attacks will work. Since footprinting relies on enumeration, the conversational pattern of rapid, multiple requests and responses that are typical in Ajax applications enable an attacker to look for many vulnerabilities, well-known ports, network locations and so on. The knowledge gained through Ajax fingerprinting can be used to support other attacks, such as XSS.

Protect Your Infrastructure against CVE-2025-47424: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-4495 – A vulnerability has been found in JAdmin-JAVA JAdmin 1.0 and classified as problematic. Affected by this vulnerability is an unknown functionality ...
  • CVE-2025-47424 – Retool (self-hosted) before 3.196.0 allows Host header injection. When the BASE_DOMAIN environment variable is not set, the HTTP host header can be...
  • CVE-2025-3794 – The WPForms – Easy Form Builder for WordPress – Contact Forms, Payment Forms, Surveys, & More plugin for WordPress is vulnerable to Stored Cross-Si...
  • CVE-2025-4494 – A vulnerability, which was classified as critical, was found in JAdmin-JAVA JAdmin 1.0. Affected is the function toLogin of the file NoNeedLoginCon...
  • CVE-2025-4492 – A vulnerability, which was classified as critical, has been found in Campcodes Online Food Ordering System 1.0. This issue affects some unknown pro...