CVE-2025-4444 Vulnerability Analysis & Exploit Details

CVE-2025-4444
Vulnerability Scoring

3.7
/10
Moderate Risk

Exploiting CVE-2025-4444 requires specific conditions, leading to a moderate security impact.

Attack Complexity Details

  • Attack Complexity: High
    Exploits require significant effort and special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: None
    No privileges are required for exploitation.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-4444 Details

Status: Received on 18 Sep 2025, 14:15 UTC

Published on: 18 Sep 2025, 14:15 UTC

CVSS Release: version 3

CVSS3 Source

cna@vuldb.com

CVSS3 Type

Primary

CVSS3 Vector

CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L

CVE-2025-4444 Vulnerability Summary

CVE-2025-4444: A security flaw has been discovered in Tor up to 0.4.7.16/0.4.8.17. Impacted is an unknown function of the component Onion Service Descriptor Handler. Performing manipulation results in resource consumption. The attack may be initiated remotely. The attack's complexity is rated as high. The exploitability is considered difficult. Upgrading to version 0.4.8.18 and 0.4.9.3-alpha is recommended to address this issue. It is recommended to upgrade the affected component.

Assessing the Risk of CVE-2025-4444

Access Complexity Graph

The exploitability of CVE-2025-4444 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-4444

CVE-2025-4444 presents a challenge to exploit due to its high attack complexity, but the absence of privilege requirements still makes it a viable target for skilled attackers. A thorough security review is advised.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-4444, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-4444, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-4444 has no significant impact on data confidentiality.
  • Integrity: None
    CVE-2025-4444 poses no threat to data integrity.
  • Availability: Low
    CVE-2025-4444 may slightly degrade system performance without fully affecting service availability.

CVE-2025-4444 References

External References

CWE Common Weakness Enumeration

CWE-404

CAPEC Common Attack Pattern Enumeration and Classification

  • Flooding CAPEC-125 An adversary consumes the resources of a target by rapidly engaging in a large number of interactions with the target. This type of attack generally exposes a weakness in rate limiting or flow. When successful this attack prevents legitimate users from accessing the service and can cause the target to crash. This attack differs from resource depletion through leaks or allocations in that the latter attacks do not rely on the volume of requests made to the target but instead focus on manipulation of the target's operations. The key factor in a flooding attack is the number of requests the adversary can make in a given period of time. The greater this number, the more likely an attack is to succeed against a given target.
  • Excessive Allocation CAPEC-130 An adversary causes the target to allocate excessive resources to servicing the attackers' request, thereby reducing the resources available for legitimate services and degrading or denying services. Usually, this attack focuses on memory allocation, but any finite resource on the target could be the attacked, including bandwidth, processing cycles, or other resources. This attack does not attempt to force this allocation through a large number of requests (that would be Resource Depletion through Flooding) but instead uses one or a small number of requests that are carefully formatted to force the target to allocate excessive resources to service this request(s). Often this attack takes advantage of a bug in the target to cause the target to allocate resources vastly beyond what would be needed for a normal request.
  • Resource Leak Exposure CAPEC-131 An adversary utilizes a resource leak on the target to deplete the quantity of the resource available to service legitimate requests.
  • TCP Fragmentation CAPEC-494 An adversary may execute a TCP Fragmentation attack against a target with the intention of avoiding filtering rules of network controls, by attempting to fragment the TCP packet such that the headers flag field is pushed into the second fragment which typically is not filtered.
  • UDP Fragmentation CAPEC-495 An attacker may execute a UDP Fragmentation attack against a target server in an attempt to consume resources such as bandwidth and CPU. IP fragmentation occurs when an IP datagram is larger than the MTU of the route the datagram has to traverse. Typically the attacker will use large UDP packets over 1500 bytes of data which forces fragmentation as ethernet MTU is 1500 bytes. This attack is a variation on a typical UDP flood but it enables more network bandwidth to be consumed with fewer packets. Additionally it has the potential to consume server CPU resources and fill memory buffers associated with the processing and reassembling of fragmented packets.
  • ICMP Fragmentation CAPEC-496 An attacker may execute a ICMP Fragmentation attack against a target with the intention of consuming resources or causing a crash. The attacker crafts a large number of identical fragmented IP packets containing a portion of a fragmented ICMP message. The attacker these sends these messages to a target host which causes the host to become non-responsive. Another vector may be sending a fragmented ICMP message to a target host with incorrect sizes in the header which causes the host to hang.
  • BlueSmacking CAPEC-666 An adversary uses Bluetooth flooding to transfer large packets to Bluetooth enabled devices over the L2CAP protocol with the goal of creating a DoS. This attack must be carried out within close proximity to a Bluetooth enabled device.

Protect Your Infrastructure against CVE-2025-4444: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-55912 – An issue in ClipBucket 5.5.0 and prior versions allows an unauthenticated attacker can exploit the plupload endpoint in photo_uploader.php to uploa...
  • CVE-2025-50255 – Cross Site Request Forgery (CSRF) vulnerability in Smartvista BackOffice SmartVista Suite 2.2.22 via crafted GET request.
  • CVE-2025-36146 – IBM Lakehouse (watsonx.data 2.2) could allow an authenticated user to obtain sensitive server component version information which could aid in furt...
  • CVE-2025-36143 – IBM Lakehouse (watsonx.data 2.2) could allow an authenticated privileged user to execute arbitrary commands on the system due to improper validatio...
  • CVE-2025-36139 – IBM Lakehouse (watsonx.data 2.2) is vulnerable to stored cross-site scripting. This vulnerability allows a privileged user to embed arbitrary JavaS...