CVE-2025-42959 Vulnerability Analysis & Exploit Details

CVE-2025-42959
Vulnerability Scoring

8.1
/10
Severe Risk

Cybersecurity professionals consider CVE-2025-42959 an immediate threat requiring urgent mitigation.

Attack Complexity Details

  • Attack Complexity: High
    Exploits require significant effort and special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: None
    No privileges are required for exploitation.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-42959 Details

Status: Awaiting Analysis

Published on: 08 Jul 2025, 01:15 UTC

CVSS Release: version 3

CVSS3 Source

cna@sap.com

CVSS3 Type

Primary

CVSS3 Vector

CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

CVE-2025-42959 Vulnerability Summary

CVE-2025-42959: An unauthenticated attacker may exploit a scenario where a Hashed Message Authentication Code (HMAC) credential, extracted from a system missing specific security patches, is reused in a replay attack against a different system. Even if the target system is fully patched, successful exploitation could result in complete system compromise, affecting confidentiality, integrity, and availability.

Assessing the Risk of CVE-2025-42959

Access Complexity Graph

The exploitability of CVE-2025-42959 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-42959

CVE-2025-42959 presents a challenge to exploit due to its high attack complexity, but the absence of privilege requirements still makes it a viable target for skilled attackers. A thorough security review is advised.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-42959, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-42959, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: High
    Exploiting CVE-2025-42959 can result in unauthorized access to sensitive data, severely compromising data privacy.
  • Integrity: High
    CVE-2025-42959 could allow unauthorized modifications to data, potentially affecting system reliability and trust.
  • Availability: High
    CVE-2025-42959 can disrupt system operations, potentially causing complete denial of service (DoS).

CVE-2025-42959 References

External References

CWE Common Weakness Enumeration

CWE-308

CAPEC Common Attack Pattern Enumeration and Classification

  • Dictionary-based Password Attack CAPEC-16 An attacker tries each of the words in a dictionary as passwords to gain access to the system via some user's account. If the password chosen by the user was a word within the dictionary, this attack will be successful (in the absence of other mitigations). This is a specific instance of the password brute forcing attack pattern. Dictionary Attacks differ from similar attacks such as Password Spraying (CAPEC-565) and Credential Stuffing (CAPEC-600), since they leverage unknown username/password combinations and don't care about inducing account lockouts.
  • Password Brute Forcing CAPEC-49 An adversary tries every possible value for a password until they succeed. A brute force attack, if feasible computationally, will always be successful because it will essentially go through all possible passwords given the alphabet used (lower case letters, upper case letters, numbers, symbols, etc.) and the maximum length of the password.
  • Kerberoasting CAPEC-509 Through the exploitation of how service accounts leverage Kerberos authentication with Service Principal Names (SPNs), the adversary obtains and subsequently cracks the hashed credentials of a service account target to exploit its privileges. The Kerberos authentication protocol centers around a ticketing system which is used to request/grant access to services and to then access the requested services. As an authenticated user, the adversary may request Active Directory and obtain a service ticket with portions encrypted via RC4 with the private key of the authenticated account. By extracting the local ticket and saving it disk, the adversary can brute force the hashed value to reveal the target account credentials.
  • Rainbow Table Password Cracking CAPEC-55 An attacker gets access to the database table where hashes of passwords are stored. They then use a rainbow table of pre-computed hash chains to attempt to look up the original password. Once the original password corresponding to the hash is obtained, the attacker uses the original password to gain access to the system.
  • Remote Services with Stolen Credentials CAPEC-555 This pattern of attack involves an adversary that uses stolen credentials to leverage remote services such as RDP, telnet, SSH, and VNC to log into a system. Once access is gained, any number of malicious activities could be performed.
  • Use of Known Domain Credentials CAPEC-560 An adversary guesses or obtains (i.e. steals or purchases) legitimate credentials (e.g. userID/password) to achieve authentication and to perform authorized actions under the guise of an authenticated user or service.
  • Windows Admin Shares with Stolen Credentials CAPEC-561 An adversary guesses or obtains (i.e. steals or purchases) legitimate Windows administrator credentials (e.g. userID/password) to access Windows Admin Shares on a local machine or within a Windows domain.
  • Password Spraying CAPEC-565 In a Password Spraying attack, an adversary tries a small list (e.g. 3-5) of common or expected passwords, often matching the target's complexity policy, against a known list of user accounts to gain valid credentials. The adversary tries a particular password for each user account, before moving onto the next password in the list. This approach assists the adversary in remaining undetected by avoiding rapid or frequent account lockouts. The adversary may then reattempt the process with additional passwords, once enough time has passed to prevent inducing a lockout.
  • Credential Stuffing CAPEC-600 An adversary tries known username/password combinations against different systems, applications, or services to gain additional authenticated access. Credential Stuffing attacks rely upon the fact that many users leverage the same username/password combination for multiple systems, applications, and services.
  • Use of Captured Hashes (Pass The Hash) CAPEC-644 An adversary obtains (i.e. steals or purchases) legitimate Windows domain credential hash values to access systems within the domain that leverage the Lan Man (LM) and/or NT Lan Man (NTLM) authentication protocols.
  • Use of Captured Tickets (Pass The Ticket) CAPEC-645 An adversary uses stolen Kerberos tickets to access systems/resources that leverage the Kerberos authentication protocol. The Kerberos authentication protocol centers around a ticketing system which is used to request/grant access to services and to then access the requested services. An adversary can obtain any one of these tickets (e.g. Service Ticket, Ticket Granting Ticket, Silver Ticket, or Golden Ticket) to authenticate to a system/resource without needing the account's credentials. Depending on the ticket obtained, the adversary may be able to access a particular resource or generate TGTs for any account within an Active Directory Domain.
  • Use of Known Kerberos Credentials CAPEC-652 An adversary obtains (i.e. steals or purchases) legitimate Kerberos credentials (e.g. Kerberos service account userID/password or Kerberos Tickets) with the goal of achieving authenticated access to additional systems, applications, or services within the domain.
  • Use of Known Operating System Credentials CAPEC-653 An adversary guesses or obtains (i.e. steals or purchases) legitimate operating system credentials (e.g. userID/password) to achieve authentication and to perform authorized actions on the system, under the guise of an authenticated user or service. This applies to any Operating System.
  • Try Common or Default Usernames and Passwords CAPEC-70 An adversary may try certain common or default usernames and passwords to gain access into the system and perform unauthorized actions. An adversary may try an intelligent brute force using empty passwords, known vendor default credentials, as well as a dictionary of common usernames and passwords. Many vendor products come preconfigured with default (and thus well-known) usernames and passwords that should be deleted prior to usage in a production environment. It is a common mistake to forget to remove these default login credentials. Another problem is that users would pick very simple (common) passwords (e.g. "secret" or "password") that make it easier for the attacker to gain access to the system compared to using a brute force attack or even a dictionary attack using a full dictionary.

Protect Your Infrastructure against CVE-2025-42959: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-54792 – LocalSend is an open-source app to securely share files and messages with nearby devices over local networks without needing an internet connection...
  • CVE-2025-54424 – 1Panel is a web interface and MCP Server that manages websites, files, containers, databases, and LLMs on a Linux server. In versions 2.0.5 and bel...
  • CVE-2025-54132 – Cursor is a code editor built for programming with AI. In versions below 1.3, Mermaid (which is used to render diagrams) allows embedding images wh...
  • CVE-2025-54131 – Cursor is a code editor built for programming with AI. In versions below 1.3, an attacker can bypass the allow list in auto-run mode with a backtic...
  • CVE-2024-13978 – A vulnerability was found in LibTIFF up to 4.7.0. It has been declared as problematic. Affected by this vulnerability is the function t2p_read_tiff...