CVE-2025-40341 Vulnerability Analysis & Exploit Details

CVE-2025-40341
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-40341 Details

Status: Awaiting Analysis

Published on: 09 Dec 2025, 16:17 UTC

CVSS Release:

CVE-2025-40341 Vulnerability Summary

CVE-2025-40341: In the Linux kernel, the following vulnerability has been resolved: futex: Don't leak robust_list pointer on exec race sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access() to check if the calling task is allowed to access another task's robust_list pointer. This check is racy against a concurrent exec() in the target process. During exec(), a task may transition from a non-privileged binary to a privileged one (e.g., setuid binary) and its credentials/memory mappings may change. If get_robust_list() performs ptrace_may_access() before this transition, it may erroneously allow access to sensitive information after the target becomes privileged. A racy access allows an attacker to exploit a window during which ptrace_may_access() passes before a target process transitions to a privileged state via exec(). For example, consider a non-privileged task T that is about to execute a setuid-root binary. An attacker task A calls get_robust_list(T) while T is still unprivileged. Since ptrace_may_access() checks permissions based on current credentials, it succeeds. However, if T begins exec immediately afterwards, it becomes privileged and may change its memory mappings. Because get_robust_list() proceeds to access T->robust_list without synchronizing with exec() it may read user-space pointers from a now-privileged process. This violates the intended post-exec access restrictions and could expose sensitive memory addresses or be used as a primitive in a larger exploit chain. Consequently, the race can lead to unauthorized disclosure of information across privilege boundaries and poses a potential security risk. Take a read lock on signal->exec_update_lock prior to invoking ptrace_may_access() and accessing the robust_list/compat_robust_list. This ensures that the target task's exec state remains stable during the check, allowing for consistent and synchronized validation of credentials.

Assessing the Risk of CVE-2025-40341

Access Complexity Graph

The exploitability of CVE-2025-40341 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-40341

No exploitability data is available for CVE-2025-40341.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-40341, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-40341, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-40341 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-40341 does not impact data integrity.
  • Availability: None
    CVE-2025-40341 does not affect system availability.

CVE-2025-40341 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-40341: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-15166 – A vulnerability was found in itsourcecode Online Cake Ordering System 1.0. This affects an unknown function of the file /updatesupplier.php?action=...
  • CVE-2025-15165 – A vulnerability has been found in itsourcecode Online Cake Ordering System 1.0. The impacted element is an unknown function of the file /updatecust...
  • CVE-2025-15164 – A security flaw has been discovered in Tenda WH450 1.0.0.18. This affects an unknown part of the file /goform/SafeMacFilter. The manipulation of th...
  • CVE-2025-15163 – A vulnerability was identified in Tenda WH450 1.0.0.18. Affected by this issue is some unknown functionality of the file /goform/SafeEmailFilter. T...
  • CVE-2025-15067 – Unrestricted Upload of File with Dangerous Type vulnerability in Innorix Innorix WP allows Upload a Web Shell to a Web Server.This issue affects In...