CVE-2025-40214
Vulnerability Scoring
Status: Received on 04 Dec 2025, 13:15 UTC
Published on: 04 Dec 2025, 13:15 UTC
CVSS Release:
CVE-2025-40214: In the Linux kernel, the following vulnerability has been resolved: af_unix: Initialise scc_index in unix_add_edge(). Quang Le reported that the AF_UNIX GC could garbage-collect a receive queue of an alive in-flight socket, with a nice repro. The repro consists of three stages. 1) 1-a. Create a single cyclic reference with many sockets 1-b. close() all sockets 1-c. Trigger GC 2) 2-a. Pass sk-A to an embryo sk-B 2-b. Pass sk-X to sk-X 2-c. Trigger GC 3) 3-a. accept() the embryo sk-B 3-b. Pass sk-B to sk-C 3-c. close() the in-flight sk-A 3-d. Trigger GC As of 2-c, sk-A and sk-X are linked to unix_unvisited_vertices, and unix_walk_scc() groups them into two different SCCs: unix_sk(sk-A)->vertex->scc_index = 2 (UNIX_VERTEX_INDEX_START) unix_sk(sk-X)->vertex->scc_index = 3 Once GC completes, unix_graph_grouped is set to true. Also, unix_graph_maybe_cyclic is set to true due to sk-X's cyclic self-reference, which makes close() trigger GC. At 3-b, unix_add_edge() allocates unix_sk(sk-B)->vertex and links it to unix_unvisited_vertices. unix_update_graph() is called at 3-a. and 3-b., but neither unix_graph_grouped nor unix_graph_maybe_cyclic is changed because both sk-B's listener and sk-C are not in-flight. 3-c decrements sk-A's file refcnt to 1. Since unix_graph_grouped is true at 3-d, unix_walk_scc_fast() is finally called and iterates 3 sockets sk-A, sk-B, and sk-X: sk-A -> sk-B (-> sk-C) sk-X -> sk-X This is totally fine. All of them are not yet close()d and should be grouped into different SCCs. However, unix_vertex_dead() misjudges that sk-A and sk-B are in the same SCC and sk-A is dead. unix_sk(sk-A)->scc_index == unix_sk(sk-B)->scc_index <-- Wrong! && sk-A's file refcnt == unix_sk(sk-A)->vertex->out_degree ^-- 1 in-flight count for sk-B -> sk-A is dead !? The problem is that unix_add_edge() does not initialise scc_index. Stage 1) is used for heap spraying, making a newly allocated vertex have vertex->scc_index == 2 (UNIX_VERTEX_INDEX_START) set by unix_walk_scc() at 1-c. Let's track the max SCC index from the previous unix_walk_scc() call and assign the max + 1 to a new vertex's scc_index. This way, we can continue to avoid Tarjan's algorithm while preventing misjudgments.
The exploitability of CVE-2025-40214 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-40214.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-40214, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-40214, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.