CVE-2025-40105 Vulnerability Analysis & Exploit Details

CVE-2025-40105
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-40105 Details

Status: Awaiting Analysis

Published on: 30 Oct 2025, 10:15 UTC

CVSS Release:

CVE-2025-40105 Vulnerability Summary

CVE-2025-40105: In the Linux kernel, the following vulnerability has been resolved: vfs: Don't leak disconnected dentries on umount When user calls open_by_handle_at() on some inode that is not cached, we will create disconnected dentry for it. If such dentry is a directory, exportfs_decode_fh_raw() will then try to connect this dentry to the dentry tree through reconnect_path(). It may happen for various reasons (such as corrupted fs or race with rename) that the call to lookup_one_unlocked() in reconnect_one() will fail to find the dentry we are trying to reconnect and instead create a new dentry under the parent. Now this dentry will not be marked as disconnected although the parent still may well be disconnected (at least in case this inconsistency happened because the fs is corrupted and .. doesn't point to the real parent directory). This creates inconsistency in disconnected flags but AFAICS it was mostly harmless. At least until commit f1ee616214cb ("VFS: don't keep disconnected dentries on d_anon") which removed adding of most disconnected dentries to sb->s_anon list. Thus after this commit cleanup of disconnected dentries implicitely relies on the fact that dput() will immediately reclaim such dentries. However when some leaf dentry isn't marked as disconnected, as in the scenario described above, the reclaim doesn't happen and the dentries are "leaked". Memory reclaim can eventually reclaim them but otherwise they stay in memory and if umount comes first, we hit infamous "Busy inodes after unmount" bug. Make sure all dentries created under a disconnected parent are marked as disconnected as well.

Assessing the Risk of CVE-2025-40105

Access Complexity Graph

The exploitability of CVE-2025-40105 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-40105

No exploitability data is available for CVE-2025-40105.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-40105, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-40105, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-40105 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-40105 does not impact data integrity.
  • Availability: None
    CVE-2025-40105 does not affect system availability.

CVE-2025-40105 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-40105: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-13735 – Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program fi...
  • CVE-2025-9558 – There is a potential OOB Write vulnerability in the gen_prov_start function in pb_adv.c. The full length of the received data is copied into the li...
  • CVE-2025-9557 – ‭An out-of-bound write can lead to an arbitrary code execution. Even on devices with some form of memory protection, this can still lead to‬ ‭a cra...
  • CVE-2025-59820 – In KDE Krita before 5.2.13, loading a manipulated TGA file could result in a heap-based buffer overflow in plugins/impex/tga/kis_tga_import.cpp (ak...
  • CVE-2025-55174 – In KDE Skanpage before 25.08.0, an attempt at file overwrite can result in the contents of the new file at the beginning followed by the partial co...