CVE-2025-40042
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕒 30 Oct 2025, 15:05 UTC
Originally published on: 🕛 28 Oct 2025, 12:15 UTC
Time between publication and last update: 2 days
CVSS Release:
CVE-2025-40042: In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race condition in kprobe initialization causing NULL pointer dereference There is a critical race condition in kprobe initialization that can lead to NULL pointer dereference and kernel crash. [1135630.084782] Unable to handle kernel paging request at virtual address 0000710a04630000 ... [1135630.260314] pstate: 404003c9 (nZcv DAIF +PAN -UAO) [1135630.269239] pc : kprobe_perf_func+0x30/0x260 [1135630.277643] lr : kprobe_dispatcher+0x44/0x60 [1135630.286041] sp : ffffaeff4977fa40 [1135630.293441] x29: ffffaeff4977fa40 x28: ffffaf015340e400 [1135630.302837] x27: 0000000000000000 x26: 0000000000000000 [1135630.312257] x25: ffffaf029ed108a8 x24: ffffaf015340e528 [1135630.321705] x23: ffffaeff4977fc50 x22: ffffaeff4977fc50 [1135630.331154] x21: 0000000000000000 x20: ffffaeff4977fc50 [1135630.340586] x19: ffffaf015340e400 x18: 0000000000000000 [1135630.349985] x17: 0000000000000000 x16: 0000000000000000 [1135630.359285] x15: 0000000000000000 x14: 0000000000000000 [1135630.368445] x13: 0000000000000000 x12: 0000000000000000 [1135630.377473] x11: 0000000000000000 x10: 0000000000000000 [1135630.386411] x9 : 0000000000000000 x8 : 0000000000000000 [1135630.395252] x7 : 0000000000000000 x6 : 0000000000000000 [1135630.403963] x5 : 0000000000000000 x4 : 0000000000000000 [1135630.412545] x3 : 0000710a04630000 x2 : 0000000000000006 [1135630.421021] x1 : ffffaeff4977fc50 x0 : 0000710a04630000 [1135630.429410] Call trace: [1135630.434828] kprobe_perf_func+0x30/0x260 [1135630.441661] kprobe_dispatcher+0x44/0x60 [1135630.448396] aggr_pre_handler+0x70/0xc8 [1135630.454959] kprobe_breakpoint_handler+0x140/0x1e0 [1135630.462435] brk_handler+0xbc/0xd8 [1135630.468437] do_debug_exception+0x84/0x138 [1135630.475074] el1_dbg+0x18/0x8c [1135630.480582] security_file_permission+0x0/0xd0 [1135630.487426] vfs_write+0x70/0x1c0 [1135630.493059] ksys_write+0x5c/0xc8 [1135630.498638] __arm64_sys_write+0x24/0x30 [1135630.504821] el0_svc_common+0x78/0x130 [1135630.510838] el0_svc_handler+0x38/0x78 [1135630.516834] el0_svc+0x8/0x1b0 kernel/trace/trace_kprobe.c: 1308 0xffff3df8995039ec <kprobe_perf_func+0x2c>: ldr x21, [x24,#120] include/linux/compiler.h: 294 0xffff3df8995039f0 <kprobe_perf_func+0x30>: ldr x1, [x21,x0] kernel/trace/trace_kprobe.c 1308: head = this_cpu_ptr(call->perf_events); 1309: if (hlist_empty(head)) 1310: return 0; crash> struct trace_event_call -o struct trace_event_call { ... [120] struct hlist_head *perf_events; //(call->perf_event) ... } crash> struct trace_event_call ffffaf015340e528 struct trace_event_call { ... perf_events = 0xffff0ad5fa89f088, //this value is correct, but x21 = 0 ... } Race Condition Analysis: The race occurs between kprobe activation and perf_events initialization: CPU0 CPU1 ==== ==== perf_kprobe_init perf_trace_event_init tp_event->perf_events = list;(1) tp_event->class->reg (2)← KPROBE ACTIVE Debug exception triggers ... kprobe_dispatcher kprobe_perf_func (tk->tp.flags & TP_FLAG_PROFILE) head = this_cpu_ptr(call->perf_events)(3) (perf_events is still NULL) Problem: 1. CPU0 executes (1) assigning tp_event->perf_events = list 2. CPU0 executes (2) enabling kprobe functionality via class->reg() 3. CPU1 triggers and reaches kprobe_dispatcher 4. CPU1 checks TP_FLAG_PROFILE - condition passes (step 2 completed) 5. CPU1 calls kprobe_perf_func() and crashes at (3) because call->perf_events is still NULL CPU1 sees that kprobe functionality is enabled but does not see that perf_events has been assigned. Add pairing read an ---truncated---
The exploitability of CVE-2025-40042 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-40042.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-40042, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-40042, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.