CVE-2025-40040
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕒 30 Oct 2025, 15:05 UTC
Originally published on: 🕛 28 Oct 2025, 12:15 UTC
Time between publication and last update: 2 days
CVSS Release:
CVE-2025-40040: In the Linux kernel, the following vulnerability has been resolved: mm/ksm: fix flag-dropping behavior in ksm_madvise syzkaller discovered the following crash: (kernel BUG) [ 44.607039] ------------[ cut here ]------------ [ 44.607422] kernel BUG at mm/userfaultfd.c:2067! [ 44.608148] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI [ 44.608814] CPU: 1 UID: 0 PID: 2475 Comm: reproducer Not tainted 6.16.0-rc6 #1 PREEMPT(none) [ 44.609635] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 44.610695] RIP: 0010:userfaultfd_release_all+0x3a8/0x460 <snip other registers, drop unreliable trace> [ 44.617726] Call Trace: [ 44.617926] <TASK> [ 44.619284] userfaultfd_release+0xef/0x1b0 [ 44.620976] __fput+0x3f9/0xb60 [ 44.621240] fput_close_sync+0x110/0x210 [ 44.622222] __x64_sys_close+0x8f/0x120 [ 44.622530] do_syscall_64+0x5b/0x2f0 [ 44.622840] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 44.623244] RIP: 0033:0x7f365bb3f227 Kernel panics because it detects UFFD inconsistency during userfaultfd_release_all(). Specifically, a VMA which has a valid pointer to vma->vm_userfaultfd_ctx, but no UFFD flags in vma->vm_flags. The inconsistency is caused in ksm_madvise(): when user calls madvise() with MADV_UNMEARGEABLE on a VMA that is registered for UFFD in MINOR mode, it accidentally clears all flags stored in the upper 32 bits of vma->vm_flags. Assuming x86_64 kernel build, unsigned long is 64-bit and unsigned int and int are 32-bit wide. This setup causes the following mishap during the &= ~VM_MERGEABLE assignment. VM_MERGEABLE is a 32-bit constant of type unsigned int, 0x8000'0000. After ~ is applied, it becomes 0x7fff'ffff unsigned int, which is then promoted to unsigned long before the & operation. This promotion fills upper 32 bits with leading 0s, as we're doing unsigned conversion (and even for a signed conversion, this wouldn't help as the leading bit is 0). & operation thus ends up AND-ing vm_flags with 0x0000'0000'7fff'ffff instead of intended 0xffff'ffff'7fff'ffff and hence accidentally clears the upper 32-bits of its value. Fix it by changing `VM_MERGEABLE` constant to unsigned long, using the BIT() macro. Note: other VM_* flags are not affected: This only happens to the VM_MERGEABLE flag, as the other VM_* flags are all constants of type int and after ~ operation, they end up with leading 1 and are thus converted to unsigned long with leading 1s. Note 2: After commit 31defc3b01d9 ("userfaultfd: remove (VM_)BUG_ON()s"), this is no longer a kernel BUG, but a WARNING at the same place: [ 45.595973] WARNING: CPU: 1 PID: 2474 at mm/userfaultfd.c:2067 but the root-cause (flag-drop) remains the same. [akpm@linux-foundation.org: rust bindgen wasn't able to handle BIT(), from Miguel]
The exploitability of CVE-2025-40040 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-40040.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-40040, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-40040, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.