CVE-2025-40038 Vulnerability Analysis & Exploit Details

CVE-2025-40038
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-40038 Details

Status: Awaiting Analysis

Last updated: 🕒 30 Oct 2025, 15:05 UTC
Originally published on: 🕛 28 Oct 2025, 12:15 UTC

Time between publication and last update: 2 days

CVSS Release:

CVE-2025-40038 Vulnerability Summary

CVE-2025-40038: In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: Skip fastpath emulation on VM-Exit if next RIP isn't valid Skip the WRMSR and HLT fastpaths in SVM's VM-Exit handler if the next RIP isn't valid, e.g. because KVM is running with nrips=false. SVM must decode and emulate to skip the instruction if the CPU doesn't provide the next RIP, and getting the instruction bytes to decode requires reading guest memory. Reading guest memory through the emulator can fault, i.e. can sleep, which is disallowed since the fastpath handlers run with IRQs disabled. BUG: sleeping function called from invalid context at ./include/linux/uaccess.h:106 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 32611, name: qemu preempt_count: 1, expected: 0 INFO: lockdep is turned off. irq event stamp: 30580 hardirqs last enabled at (30579): [<ffffffffc08b2527>] vcpu_run+0x1787/0x1db0 [kvm] hardirqs last disabled at (30580): [<ffffffffb4f62e32>] __schedule+0x1e2/0xed0 softirqs last enabled at (30570): [<ffffffffb4247a64>] fpu_swap_kvm_fpstate+0x44/0x210 softirqs last disabled at (30568): [<ffffffffb4247a64>] fpu_swap_kvm_fpstate+0x44/0x210 CPU: 298 UID: 0 PID: 32611 Comm: qemu Tainted: G U 6.16.0-smp--e6c618b51cfe-sleep #782 NONE Tainted: [U]=USER Hardware name: Google Astoria-Turin/astoria, BIOS 0.20241223.2-0 01/17/2025 Call Trace: <TASK> dump_stack_lvl+0x7d/0xb0 __might_resched+0x271/0x290 __might_fault+0x28/0x80 kvm_vcpu_read_guest_page+0x8d/0xc0 [kvm] kvm_fetch_guest_virt+0x92/0xc0 [kvm] __do_insn_fetch_bytes+0xf3/0x1e0 [kvm] x86_decode_insn+0xd1/0x1010 [kvm] x86_emulate_instruction+0x105/0x810 [kvm] __svm_skip_emulated_instruction+0xc4/0x140 [kvm_amd] handle_fastpath_invd+0xc4/0x1a0 [kvm] vcpu_run+0x11a1/0x1db0 [kvm] kvm_arch_vcpu_ioctl_run+0x5cc/0x730 [kvm] kvm_vcpu_ioctl+0x578/0x6a0 [kvm] __se_sys_ioctl+0x6d/0xb0 do_syscall_64+0x8a/0x2c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f479d57a94b </TASK> Note, this is essentially a reapply of commit 5c30e8101e8d ("KVM: SVM: Skip WRMSR fastpath on VM-Exit if next RIP isn't valid"), but with different justification (KVM now grabs SRCU when skipping the instruction for other reasons).

Assessing the Risk of CVE-2025-40038

Access Complexity Graph

The exploitability of CVE-2025-40038 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-40038

No exploitability data is available for CVE-2025-40038.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-40038, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-40038, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-40038 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-40038 does not impact data integrity.
  • Availability: None
    CVE-2025-40038 does not affect system availability.

CVE-2025-40038 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-40038: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-13735 – Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program fi...
  • CVE-2025-9558 – There is a potential OOB Write vulnerability in the gen_prov_start function in pb_adv.c. The full length of the received data is copied into the li...
  • CVE-2025-9557 – ‭An out-of-bound write can lead to an arbitrary code execution. Even on devices with some form of memory protection, this can still lead to‬ ‭a cra...
  • CVE-2025-59820 – In KDE Krita before 5.2.13, loading a manipulated TGA file could result in a heap-based buffer overflow in plugins/impex/tga/kis_tga_import.cpp (ak...
  • CVE-2025-55174 – In KDE Skanpage before 25.08.0, an attempt at file overwrite can result in the contents of the new file at the beginning followed by the partial co...