CVE-2025-40008 Vulnerability Analysis & Exploit Details

CVE-2025-40008
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-40008 Details

Status: Awaiting Analysis

Last updated: 🕢 21 Oct 2025, 19:31 UTC
Originally published on: 🕓 20 Oct 2025, 16:15 UTC

Time between publication and last update: 1 days

CVSS Release:

CVE-2025-40008 Vulnerability Summary

CVE-2025-40008: In the Linux kernel, the following vulnerability has been resolved: kmsan: fix out-of-bounds access to shadow memory Running sha224_kunit on a KMSAN-enabled kernel results in a crash in kmsan_internal_set_shadow_origin(): BUG: unable to handle page fault for address: ffffbc3840291000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1810067 P4D 1810067 PUD 192d067 PMD 3c17067 PTE 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 UID: 0 PID: 81 Comm: kunit_try_catch Tainted: G N 6.17.0-rc3 #10 PREEMPT(voluntary) Tainted: [N]=TEST Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014 RIP: 0010:kmsan_internal_set_shadow_origin+0x91/0x100 [...] Call Trace: <TASK> __msan_memset+0xee/0x1a0 sha224_final+0x9e/0x350 test_hash_buffer_overruns+0x46f/0x5f0 ? kmsan_get_shadow_origin_ptr+0x46/0xa0 ? __pfx_test_hash_buffer_overruns+0x10/0x10 kunit_try_run_case+0x198/0xa00 This occurs when memset() is called on a buffer that is not 4-byte aligned and extends to the end of a guard page, i.e. the next page is unmapped. The bug is that the loop at the end of kmsan_internal_set_shadow_origin() accesses the wrong shadow memory bytes when the address is not 4-byte aligned. Since each 4 bytes are associated with an origin, it rounds the address and size so that it can access all the origins that contain the buffer. However, when it checks the corresponding shadow bytes for a particular origin, it incorrectly uses the original unrounded shadow address. This results in reads from shadow memory beyond the end of the buffer's shadow memory, which crashes when that memory is not mapped. To fix this, correctly align the shadow address before accessing the 4 shadow bytes corresponding to each origin.

Assessing the Risk of CVE-2025-40008

Access Complexity Graph

The exploitability of CVE-2025-40008 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-40008

No exploitability data is available for CVE-2025-40008.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-40008, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-40008, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-40008 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-40008 does not impact data integrity.
  • Availability: None
    CVE-2025-40008 does not affect system availability.

CVE-2025-40008 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-40008: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-13735 – Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program fi...
  • CVE-2025-9558 – There is a potential OOB Write vulnerability in the gen_prov_start function in pb_adv.c. The full length of the received data is copied into the li...
  • CVE-2025-9557 – ‭An out-of-bound write can lead to an arbitrary code execution. Even on devices with some form of memory protection, this can still lead to‬ ‭a cra...
  • CVE-2025-59820 – In KDE Krita before 5.2.13, loading a manipulated TGA file could result in a heap-based buffer overflow in plugins/impex/tga/kis_tga_import.cpp (ak...
  • CVE-2025-55174 – In KDE Skanpage before 25.08.0, an attempt at file overwrite can result in the contents of the new file at the beginning followed by the partial co...