CVE-2025-39927
Vulnerability Scoring
Status: Received on 01 Oct 2025, 08:15 UTC
Published on: 01 Oct 2025, 08:15 UTC
CVSS Release:
CVE-2025-39927: In the Linux kernel, the following vulnerability has been resolved: ceph: fix race condition validating r_parent before applying state Add validation to ensure the cached parent directory inode matches the directory info in MDS replies. This prevents client-side race conditions where concurrent operations (e.g. rename) cause r_parent to become stale between request initiation and reply processing, which could lead to applying state changes to incorrect directory inodes. [ idryomov: folded a kerneldoc fixup and a follow-up fix from Alex to move CEPH_CAP_PIN reference when r_parent is updated: When the parent directory lock is not held, req->r_parent can become stale and is updated to point to the correct inode. However, the associated CEPH_CAP_PIN reference was not being adjusted. The CEPH_CAP_PIN is a reference on an inode that is tracked for accounting purposes. Moving this pin is important to keep the accounting balanced. When the pin was not moved from the old parent to the new one, it created two problems: The reference on the old, stale parent was never released, causing a reference leak. A reference for the new parent was never acquired, creating the risk of a reference underflow later in ceph_mdsc_release_request(). This patch corrects the logic by releasing the pin from the old parent and acquiring it for the new parent when r_parent is switched. This ensures reference accounting stays balanced. ]
The exploitability of CVE-2025-39927 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-39927.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-39927, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-39927, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.