CVE-2025-39913 Vulnerability Analysis & Exploit Details

CVE-2025-39913
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-39913 Details

Status: Received on 01 Oct 2025, 08:15 UTC

Published on: 01 Oct 2025, 08:15 UTC

CVSS Release:

CVE-2025-39913 Vulnerability Summary

CVE-2025-39913: In the Linux kernel, the following vulnerability has been resolved: tcp_bpf: Call sk_msg_free() when tcp_bpf_send_verdict() fails to allocate psock->cork. syzbot reported the splat below. [0] The repro does the following: 1. Load a sk_msg prog that calls bpf_msg_cork_bytes(msg, cork_bytes) 2. Attach the prog to a SOCKMAP 3. Add a socket to the SOCKMAP 4. Activate fault injection 5. Send data less than cork_bytes At 5., the data is carried over to the next sendmsg() as it is smaller than the cork_bytes specified by bpf_msg_cork_bytes(). Then, tcp_bpf_send_verdict() tries to allocate psock->cork to hold the data, but this fails silently due to fault injection + __GFP_NOWARN. If the allocation fails, we need to revert the sk->sk_forward_alloc change done by sk_msg_alloc(). Let's call sk_msg_free() when tcp_bpf_send_verdict fails to allocate psock->cork. The "*copied" also needs to be updated such that a proper error can be returned to the caller, sendmsg. It fails to allocate psock->cork. Nothing has been corked so far, so this patch simply sets "*copied" to 0. [0]: WARNING: net/ipv4/af_inet.c:156 at inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156, CPU#1: syz-executor/5983 Modules linked in: CPU: 1 UID: 0 PID: 5983 Comm: syz-executor Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:inet_sock_destruct+0x623/0x730 net/ipv4/af_inet.c:156 Code: 0f 0b 90 e9 62 fe ff ff e8 7a db b5 f7 90 0f 0b 90 e9 95 fe ff ff e8 6c db b5 f7 90 0f 0b 90 e9 bb fe ff ff e8 5e db b5 f7 90 <0f> 0b 90 e9 e1 fe ff ff 89 f9 80 e1 07 80 c1 03 38 c1 0f 8c 9f fc RSP: 0018:ffffc90000a08b48 EFLAGS: 00010246 RAX: ffffffff8a09d0b2 RBX: dffffc0000000000 RCX: ffff888024a23c80 RDX: 0000000000000100 RSI: 0000000000000fff RDI: 0000000000000000 RBP: 0000000000000fff R08: ffff88807e07c627 R09: 1ffff1100fc0f8c4 R10: dffffc0000000000 R11: ffffed100fc0f8c5 R12: ffff88807e07c380 R13: dffffc0000000000 R14: ffff88807e07c60c R15: 1ffff1100fc0f872 FS: 00005555604c4500(0000) GS:ffff888125af1000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005555604df5c8 CR3: 0000000032b06000 CR4: 00000000003526f0 Call Trace: <IRQ> __sk_destruct+0x86/0x660 net/core/sock.c:2339 rcu_do_batch kernel/rcu/tree.c:2605 [inline] rcu_core+0xca8/0x1770 kernel/rcu/tree.c:2861 handle_softirqs+0x286/0x870 kernel/softirq.c:579 __do_softirq kernel/softirq.c:613 [inline] invoke_softirq kernel/softirq.c:453 [inline] __irq_exit_rcu+0xca/0x1f0 kernel/softirq.c:680 irq_exit_rcu+0x9/0x30 kernel/softirq.c:696 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1052 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1052 </IRQ>

Assessing the Risk of CVE-2025-39913

Access Complexity Graph

The exploitability of CVE-2025-39913 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-39913

No exploitability data is available for CVE-2025-39913.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-39913, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-39913, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-39913 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-39913 does not impact data integrity.
  • Availability: None
    CVE-2025-39913 does not affect system availability.

CVE-2025-39913 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-39913: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-10847 – DX Unified Infrastructure Management (Nimsoft/UIM) and below contains an improper ACL handling vulnerability in the robot (controller) component. A...
  • CVE-2025-61622 – Deserialization of untrusted data in python in pyfory versions 0.12.0 through 0.12.2, or the legacy pyfury versions from 0.1.0 through 0.10.3: allo...
  • CVE-2025-39928 – In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: ensure data length is within supported range Add an explicit ch...
  • CVE-2025-39927 – In the Linux kernel, the following vulnerability has been resolved: ceph: fix race condition validating r_parent before applying state Add valida...
  • CVE-2025-39926 – In the Linux kernel, the following vulnerability has been resolved: genetlink: fix genl_bind() invoking bind() after -EPERM Per family bind/unbin...