CVE-2025-39866
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕘 22 Sep 2025, 21:23 UTC
Originally published on: 🕓 19 Sep 2025, 16:15 UTC
Time between publication and last update: 3 days
CVSS Release:
CVE-2025-39866: In the Linux kernel, the following vulnerability has been resolved: fs: writeback: fix use-after-free in __mark_inode_dirty() An use-after-free issue occurred when __mark_inode_dirty() get the bdi_writeback that was in the progress of switching. CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1 ...... pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mark_inode_dirty+0x124/0x418 lr : __mark_inode_dirty+0x118/0x418 sp : ffffffc08c9dbbc0 ........ Call trace: __mark_inode_dirty+0x124/0x418 generic_update_time+0x4c/0x60 file_modified+0xcc/0xd0 ext4_buffered_write_iter+0x58/0x124 ext4_file_write_iter+0x54/0x704 vfs_write+0x1c0/0x308 ksys_write+0x74/0x10c __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x40/0xe4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x194/0x198 Root cause is: systemd-random-seed kworker ---------------------------------------------------------------------- ___mark_inode_dirty inode_switch_wbs_work_fn spin_lock(&inode->i_lock); inode_attach_wb locked_inode_to_wb_and_lock_list get inode->i_wb spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock) spin_lock(&inode->i_lock) inode_io_list_move_locked spin_unlock(&wb->list_lock) spin_unlock(&inode->i_lock) spin_lock(&old_wb->list_lock) inode_do_switch_wbs spin_lock(&inode->i_lock) inode->i_wb = new_wb spin_unlock(&inode->i_lock) spin_unlock(&old_wb->list_lock) wb_put_many(old_wb, nr_switched) cgwb_release old wb released wb_wakeup_delayed() accesses wb, then trigger the use-after-free issue Fix this race condition by holding inode spinlock until wb_wakeup_delayed() finished.
The exploitability of CVE-2025-39866 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-39866.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-39866, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-39866, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.