CVE-2025-39828 Vulnerability Analysis & Exploit Details

CVE-2025-39828
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-39828 Details

Status: Awaiting Analysis

Last updated: 🕑 17 Sep 2025, 14:18 UTC
Originally published on: 🕐 16 Sep 2025, 13:16 UTC

Time between publication and last update: 1 days

CVSS Release:

CVE-2025-39828 Vulnerability Summary

CVE-2025-39828: In the Linux kernel, the following vulnerability has been resolved: atm: atmtcp: Prevent arbitrary write in atmtcp_recv_control(). syzbot reported the splat below. [0] When atmtcp_v_open() or atmtcp_v_close() is called via connect() or close(), atmtcp_send_control() is called to send an in-kernel special message. The message has ATMTCP_HDR_MAGIC in atmtcp_control.hdr.length. Also, a pointer of struct atm_vcc is set to atmtcp_control.vcc. The notable thing is struct atmtcp_control is uAPI but has a space for an in-kernel pointer. struct atmtcp_control { struct atmtcp_hdr hdr; /* must be first */ ... atm_kptr_t vcc; /* both directions */ ... } __ATM_API_ALIGN; typedef struct { unsigned char _[8]; } __ATM_API_ALIGN atm_kptr_t; The special message is processed in atmtcp_recv_control() called from atmtcp_c_send(). atmtcp_c_send() is vcc->dev->ops->send() and called from 2 paths: 1. .ndo_start_xmit() (vcc->send() == atm_send_aal0()) 2. vcc_sendmsg() The problem is sendmsg() does not validate the message length and userspace can abuse atmtcp_recv_control() to overwrite any kptr by atmtcp_control. Let's add a new ->pre_send() hook to validate messages from sendmsg(). [0]: Oops: general protection fault, probably for non-canonical address 0xdffffc00200000ab: 0000 [#1] SMP KASAN PTI KASAN: probably user-memory-access in range [0x0000000100000558-0x000000010000055f] CPU: 0 UID: 0 PID: 5865 Comm: syz-executor331 Not tainted 6.17.0-rc1-syzkaller-00215-gbab3ce404553 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:atmtcp_recv_control drivers/atm/atmtcp.c:93 [inline] RIP: 0010:atmtcp_c_send+0x1da/0x950 drivers/atm/atmtcp.c:297 Code: 4d 8d 75 1a 4c 89 f0 48 c1 e8 03 42 0f b6 04 20 84 c0 0f 85 15 06 00 00 41 0f b7 1e 4d 8d b7 60 05 00 00 4c 89 f0 48 c1 e8 03 <42> 0f b6 04 20 84 c0 0f 85 13 06 00 00 66 41 89 1e 4d 8d 75 1c 4c RSP: 0018:ffffc90003f5f810 EFLAGS: 00010203 RAX: 00000000200000ab RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff88802a510000 RSI: 00000000ffffffff RDI: ffff888030a6068c RBP: ffff88802699fb40 R08: ffff888030a606eb R09: 1ffff1100614c0dd R10: dffffc0000000000 R11: ffffffff8718fc40 R12: dffffc0000000000 R13: ffff888030a60680 R14: 000000010000055f R15: 00000000ffffffff FS: 00007f8d7e9236c0(0000) GS:ffff888125c1c000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000045ad50 CR3: 0000000075bde000 CR4: 00000000003526f0 Call Trace: <TASK> vcc_sendmsg+0xa10/0xc60 net/atm/common.c:645 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x219/0x270 net/socket.c:729 ____sys_sendmsg+0x505/0x830 net/socket.c:2614 ___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668 __sys_sendmsg net/socket.c:2700 [inline] __do_sys_sendmsg net/socket.c:2705 [inline] __se_sys_sendmsg net/socket.c:2703 [inline] __x64_sys_sendmsg+0x19b/0x260 net/socket.c:2703 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f8d7e96a4a9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f8d7e923198 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f8d7e9f4308 RCX: 00007f8d7e96a4a9 RDX: 0000000000000000 RSI: 0000200000000240 RDI: 0000000000000005 RBP: 00007f8d7e9f4300 R08: 65732f636f72702f R09: 65732f636f72702f R10: 65732f636f72702f R11: 0000000000000246 R12: 00007f8d7e9c10ac R13: 00007f8d7e9231a0 R14: 0000200000000200 R15: 0000200000000250 </TASK> Modules linked in:

Assessing the Risk of CVE-2025-39828

Access Complexity Graph

The exploitability of CVE-2025-39828 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-39828

No exploitability data is available for CVE-2025-39828.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-39828, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-39828, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-39828 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-39828 does not impact data integrity.
  • Availability: None
    CVE-2025-39828 does not affect system availability.

CVE-2025-39828 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-39828: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-62672 – rplay through 3.3.2 allows attackers to cause a denial of service (SIGSEGV and daemon crash) or possibly have unspecified other impact. This occurs...
  • CVE-2025-47410 – Apache Geode is vulnerable to CSRF attacks through GET requests to the Management and Monitoring REST API that could allow an attacker who has tric...
  • CVE-2025-11926 – The Related Posts Lite plugin for WordPress is vulnerable to Stored Cross-Site Scripting via admin settings in all versions up to, and including, 1...
  • CVE-2025-9890 – The Theme Editor plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 3.0. This is due to missing...
  • CVE-2025-5555 – A vulnerability has been found in Nixdorf Wincor PORT IO Driver up to 1.0.0.1. This affects the function sub_11100 in the library wnport.sys of the...