CVE-2025-39776 Vulnerability Analysis & Exploit Details

CVE-2025-39776
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-39776 Details

Status: Received on 11 Sep 2025, 17:15 UTC

Published on: 11 Sep 2025, 17:15 UTC

CVSS Release:

CVE-2025-39776 Vulnerability Summary

CVE-2025-39776: In the Linux kernel, the following vulnerability has been resolved: mm/debug_vm_pgtable: clear page table entries at destroy_args() The mm/debug_vm_pagetable test allocates manually page table entries for the tests it runs, using also its manually allocated mm_struct. That in itself is ok, but when it exits, at destroy_args() it fails to clear those entries with the *_clear functions. The problem is that leaves stale entries. If another process allocates an mm_struct with a pgd at the same address, it may end up running into the stale entry. This is happening in practice on a debug kernel with CONFIG_DEBUG_VM_PGTABLE=y, for example this is the output with some extra debugging I added (it prints a warning trace if pgtables_bytes goes negative, in addition to the warning at check_mm() function): [ 2.539353] debug_vm_pgtable: [get_random_vaddr ]: random_vaddr is 0x7ea247140000 [ 2.539366] kmem_cache info [ 2.539374] kmem_cachep 0x000000002ce82385 - freelist 0x0000000000000000 - offset 0x508 [ 2.539447] debug_vm_pgtable: [init_args ]: args->mm is 0x000000002267cc9e (...) [ 2.552800] WARNING: CPU: 5 PID: 116 at include/linux/mm.h:2841 free_pud_range+0x8bc/0x8d0 [ 2.552816] Modules linked in: [ 2.552843] CPU: 5 UID: 0 PID: 116 Comm: modprobe Not tainted 6.12.0-105.debug_vm2.el10.ppc64le+debug #1 VOLUNTARY [ 2.552859] Hardware name: IBM,9009-41A POWER9 (architected) 0x4e0202 0xf000005 of:IBM,FW910.00 (VL910_062) hv:phyp pSeries [ 2.552872] NIP: c0000000007eef3c LR: c0000000007eef30 CTR: c0000000003d8c90 [ 2.552885] REGS: c0000000622e73b0 TRAP: 0700 Not tainted (6.12.0-105.debug_vm2.el10.ppc64le+debug) [ 2.552899] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24002822 XER: 0000000a [ 2.552954] CFAR: c0000000008f03f0 IRQMASK: 0 [ 2.552954] GPR00: c0000000007eef30 c0000000622e7650 c000000002b1ac00 0000000000000001 [ 2.552954] GPR04: 0000000000000008 0000000000000000 c0000000007eef30 ffffffffffffffff [ 2.552954] GPR08: 00000000ffff00f5 0000000000000001 0000000000000048 0000000000004000 [ 2.552954] GPR12: 00000003fa440000 c000000017ffa300 c0000000051d9f80 ffffffffffffffdb [ 2.552954] GPR16: 0000000000000000 0000000000000008 000000000000000a 60000000000000e0 [ 2.552954] GPR20: 4080000000000000 c0000000113af038 00007fffcf130000 0000700000000000 [ 2.552954] GPR24: c000000062a6a000 0000000000000001 8000000062a68000 0000000000000001 [ 2.552954] GPR28: 000000000000000a c000000062ebc600 0000000000002000 c000000062ebc760 [ 2.553170] NIP [c0000000007eef3c] free_pud_range+0x8bc/0x8d0 [ 2.553185] LR [c0000000007eef30] free_pud_range+0x8b0/0x8d0 [ 2.553199] Call Trace: [ 2.553207] [c0000000622e7650] [c0000000007eef30] free_pud_range+0x8b0/0x8d0 (unreliable) [ 2.553229] [c0000000622e7750] [c0000000007f40b4] free_pgd_range+0x284/0x3b0 [ 2.553248] [c0000000622e7800] [c0000000007f4630] free_pgtables+0x450/0x570 [ 2.553274] [c0000000622e78e0] [c0000000008161c0] exit_mmap+0x250/0x650 [ 2.553292] [c0000000622e7a30] [c0000000001b95b8] __mmput+0x98/0x290 [ 2.558344] [c0000000622e7a80] [c0000000001d1018] exit_mm+0x118/0x1b0 [ 2.558361] [c0000000622e7ac0] [c0000000001d141c] do_exit+0x2ec/0x870 [ 2.558376] [c0000000622e7b60] [c0000000001d1ca8] do_group_exit+0x88/0x150 [ 2.558391] [c0000000622e7bb0] [c0000000001d1db8] sys_exit_group+0x48/0x50 [ 2.558407] [c0000000622e7be0] [c00000000003d810] system_call_exception+0x1e0/0x4c0 [ 2.558423] [c0000000622e7e50] [c00000000000d05c] system_call_vectored_common+0x15c/0x2ec (...) [ 2.558892] ---[ end trace 0000000000000000 ]--- [ 2.559022] BUG: Bad rss-counter state mm:000000002267cc9e type:MM_ANONPAGES val:1 [ 2.559037] BUG: non-zero pgtables_bytes on freeing mm: -6144 Here the modprobe process ended up with an allocated mm_struct from the mm_struct slab that was used before by the debug_vm_pgtable test. That is not a problem, since the mm_stru ---truncated---

Assessing the Risk of CVE-2025-39776

Access Complexity Graph

The exploitability of CVE-2025-39776 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-39776

No exploitability data is available for CVE-2025-39776.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-39776, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-39776, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-39776 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-39776 does not impact data integrity.
  • Availability: None
    CVE-2025-39776 does not affect system availability.

CVE-2025-39776 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-39776: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-10127 – Daikin Security Gateway is vulnerable to an authorization bypass through a user-controlled key vulnerability that could allow an attacker to bypa...
  • CVE-2025-9319 – A potential vulnerability was reported in the Lenovo Wallpaper Client that could allow arbitrary code execution under certain conditions.
  • CVE-2025-9214 – A missing authentication vulnerability was reported in some Lenovo printers that could allow a user to view limited device information or modify ne...
  • CVE-2025-9201 – A potential DLL hijacking vulnerability was discovered in Lenovo Browser during an internal security assessment that could allow a local user to ex...
  • CVE-2025-8557 – An internal product security audit of Lenovo XClarity Orchestrator (LXCO) discovered the below vulnerability: An attacker with access to a device ...