CVE-2025-39735 Vulnerability Analysis & Exploit Details

CVE-2025-39735
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-39735 Details

Status: Received on 18 Apr 2025, 07:15 UTC

Published on: 18 Apr 2025, 07:15 UTC

CVSS Release:

CVE-2025-39735 Vulnerability Summary

CVE-2025-39735: In the Linux kernel, the following vulnerability has been resolved: jfs: fix slab-out-of-bounds read in ea_get() During the "size_check" label in ea_get(), the code checks if the extended attribute list (xattr) size matches ea_size. If not, it logs "ea_get: invalid extended attribute" and calls print_hex_dump(). Here, EALIST_SIZE(ea_buf->xattr) returns 4110417968, which exceeds INT_MAX (2,147,483,647). Then ea_size is clamped: int size = clamp_t(int, ea_size, 0, EALIST_SIZE(ea_buf->xattr)); Although clamp_t aims to bound ea_size between 0 and 4110417968, the upper limit is treated as an int, causing an overflow above 2^31 - 1. This leads "size" to wrap around and become negative (-184549328). The "size" is then passed to print_hex_dump() (called "len" in print_hex_dump()), it is passed as type size_t (an unsigned type), this is then stored inside a variable called "int remaining", which is then assigned to "int linelen" which is then passed to hex_dump_to_buffer(). In print_hex_dump() the for loop, iterates through 0 to len-1, where len is 18446744073525002176, calling hex_dump_to_buffer() on each iteration: for (i = 0; i < len; i += rowsize) { linelen = min(remaining, rowsize); remaining -= rowsize; hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize, linebuf, sizeof(linebuf), ascii); ... } The expected stopping condition (i < len) is effectively broken since len is corrupted and very large. This eventually leads to the "ptr+i" being passed to hex_dump_to_buffer() to get closer to the end of the actual bounds of "ptr", eventually an out of bounds access is done in hex_dump_to_buffer() in the following for loop: for (j = 0; j < len; j++) { if (linebuflen < lx + 2) goto overflow2; ch = ptr[j]; ... } To fix this we should validate "EALIST_SIZE(ea_buf->xattr)" before it is utilised.

Assessing the Risk of CVE-2025-39735

Access Complexity Graph

The exploitability of CVE-2025-39735 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-39735

No exploitability data is available for CVE-2025-39735.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-39735, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-39735, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-39735 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-39735 does not impact data integrity.
  • Availability: None
    CVE-2025-39735 does not affect system availability.

CVE-2025-39735 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-39735: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-3816 – A vulnerability classified as critical was found in westboy CicadasCMS 2.0. This vulnerability affects unknown code of the file /system/schedule/sa...
  • CVE-2025-3808 – A vulnerability has been found in zhenfeng13 My-BBS 1.0 and classified as problematic. This vulnerability affects unknown code. The manipulation le...
  • CVE-2025-3807 – A vulnerability, which was classified as critical, was found in zhenfeng13 My-BBS 1.0. This affects the function Upload of the file src/main/java/c...
  • CVE-2025-3806 – A vulnerability, which was classified as problematic, has been found in dazhouda lecms up to 3.0.3. Affected by this issue is some unknown function...
  • CVE-2025-3805 – A vulnerability classified as critical was found in sarrionandia tournatrack up to 4c13a23f43da5317eea4614870a7a8510fc540ec. Affected by this vulne...