CVE-2025-38524 Vulnerability Analysis & Exploit Details

CVE-2025-38524
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-38524 Details

Status: Awaiting Analysis

Last updated: 🕗 18 Aug 2025, 20:16 UTC
Originally published on: 🕛 16 Aug 2025, 12:15 UTC

Time between publication and last update: 2 days

CVSS Release:

CVE-2025-38524 Vulnerability Summary

CVE-2025-38524: In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix recv-recv race of completed call If a call receives an event (such as incoming data), the call gets placed on the socket's queue and a thread in recvmsg can be awakened to go and process it. Once the thread has picked up the call off of the queue, further events will cause it to be requeued, and once the socket lock is dropped (recvmsg uses call->user_mutex to allow the socket to be used in parallel), a second thread can come in and its recvmsg can pop the call off the socket queue again. In such a case, the first thread will be receiving stuff from the call and the second thread will be blocked on call->user_mutex. The first thread can, at this point, process both the event that it picked call for and the event that the second thread picked the call for and may see the call terminate - in which case the call will be "released", decoupling the call from the user call ID assigned to it (RXRPC_USER_CALL_ID in the control message). The first thread will return okay, but then the second thread will wake up holding the user_mutex and, if it sees that the call has been released by the first thread, it will BUG thusly: kernel BUG at net/rxrpc/recvmsg.c:474! Fix this by just dequeuing the call and ignoring it if it is seen to be already released. We can't tell userspace about it anyway as the user call ID has become stale.

Assessing the Risk of CVE-2025-38524

Access Complexity Graph

The exploitability of CVE-2025-38524 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-38524

No exploitability data is available for CVE-2025-38524.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-38524, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-38524, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-38524 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-38524 does not impact data integrity.
  • Availability: None
    CVE-2025-38524 does not affect system availability.

CVE-2025-38524 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-38524: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-48042 – Incorrect Authorization vulnerability in ash-project ash allows Exploiting Incorrectly Configured Access Control Security Levels. This vulnerabilit...
  • CVE-2025-39734 – In the Linux kernel, the following vulnerability has been resolved: Revert "fs/ntfs3: Replace inode_trylock with inode_lock" This reverts commit ...
  • CVE-2025-39733 – In the Linux kernel, the following vulnerability has been resolved: team: replace team lock with rtnl lock syszbot reports various ordering issue...
  • CVE-2025-39732 – In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix sleeping-in-atomic in ath11k_mac_op_set_bitrate_mask() ath1...
  • CVE-2025-39731 – In the Linux kernel, the following vulnerability has been resolved: f2fs: vm_unmap_ram() may be called from an invalid context When testing F2FS ...