CVE-2025-38389
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 25 Jul 2025, 13:15 UTC
CVSS Release:
CVE-2025-38389: In the Linux kernel, the following vulnerability has been resolved: drm/i915/gt: Fix timeline left held on VMA alloc error The following error has been reported sporadically by CI when a test unbinds the i915 driver on a ring submission platform: <4> [239.330153] ------------[ cut here ]------------ <4> [239.330166] i915 0000:00:02.0: [drm] drm_WARN_ON(dev_priv->mm.shrink_count) <4> [239.330196] WARNING: CPU: 1 PID: 18570 at drivers/gpu/drm/i915/i915_gem.c:1309 i915_gem_cleanup_early+0x13e/0x150 [i915] ... <4> [239.330640] RIP: 0010:i915_gem_cleanup_early+0x13e/0x150 [i915] ... <4> [239.330942] Call Trace: <4> [239.330944] <TASK> <4> [239.330949] i915_driver_late_release+0x2b/0xa0 [i915] <4> [239.331202] i915_driver_release+0x86/0xa0 [i915] <4> [239.331482] devm_drm_dev_init_release+0x61/0x90 <4> [239.331494] devm_action_release+0x15/0x30 <4> [239.331504] release_nodes+0x3d/0x120 <4> [239.331517] devres_release_all+0x96/0xd0 <4> [239.331533] device_unbind_cleanup+0x12/0x80 <4> [239.331543] device_release_driver_internal+0x23a/0x280 <4> [239.331550] ? bus_find_device+0xa5/0xe0 <4> [239.331563] device_driver_detach+0x14/0x20 ... <4> [357.719679] ---[ end trace 0000000000000000 ]--- If the test also unloads the i915 module then that's followed with: <3> [357.787478] ============================================================================= <3> [357.788006] BUG i915_vma (Tainted: G U W N ): Objects remaining on __kmem_cache_shutdown() <3> [357.788031] ----------------------------------------------------------------------------- <3> [357.788204] Object 0xffff888109e7f480 @offset=29824 <3> [357.788670] Allocated in i915_vma_instance+0xee/0xc10 [i915] age=292729 cpu=4 pid=2244 <4> [357.788994] i915_vma_instance+0xee/0xc10 [i915] <4> [357.789290] init_status_page+0x7b/0x420 [i915] <4> [357.789532] intel_engines_init+0x1d8/0x980 [i915] <4> [357.789772] intel_gt_init+0x175/0x450 [i915] <4> [357.790014] i915_gem_init+0x113/0x340 [i915] <4> [357.790281] i915_driver_probe+0x847/0xed0 [i915] <4> [357.790504] i915_pci_probe+0xe6/0x220 [i915] ... Closer analysis of CI results history has revealed a dependency of the error on a few IGT tests, namely: - igt@api_intel_allocator@fork-simple-stress-signal, - igt@api_intel_allocator@two-level-inception-interruptible, - igt@gem_linear_blits@interruptible, - igt@prime_mmap_coherency@ioctl-errors, which invisibly trigger the issue, then exhibited with first driver unbind attempt. All of the above tests perform actions which are actively interrupted with signals. Further debugging has allowed to narrow that scope down to DRM_IOCTL_I915_GEM_EXECBUFFER2, and ring_context_alloc(), specific to ring submission, in particular. If successful then that function, or its execlists or GuC submission equivalent, is supposed to be called only once per GEM context engine, followed by raise of a flag that prevents the function from being called again. The function is expected to unwind its internal errors itself, so it may be safely called once more after it returns an error. In case of ring submission, the function first gets a reference to the engine's legacy timeline and then allocates a VMA. If the VMA allocation fails, e.g. when i915_vma_instance() called from inside is interrupted with a signal, then ring_context_alloc() fails, leaving the timeline held referenced. On next I915_GEM_EXECBUFFER2 IOCTL, another reference to the timeline is got, and only that last one is put on successful completion. As a consequence, the legacy timeline, with its underlying engine status page's VMA object, is still held and not released on driver unbind. Get the legacy timeline only after successful allocation of the context engine's VMA. v2: Add a note on other submission methods (Krzysztof Karas): Both execlists and GuC submission use lrc_alloc() which seems free from a similar issue. (cherry picked from commit cc43422b3cc79eacff4c5a8ba0d224688ca9dd4f)
The exploitability of CVE-2025-38389 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-38389.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-38389, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-38389, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.