CVE-2025-38279 Vulnerability Analysis & Exploit Details

CVE-2025-38279
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-38279 Details

Status: Awaiting Analysis

Published on: 10 Jul 2025, 08:15 UTC

CVSS Release:

CVE-2025-38279 Vulnerability Summary

CVE-2025-38279: In the Linux kernel, the following vulnerability has been resolved: bpf: Do not include stack ptr register in precision backtracking bookkeeping Yi Lai reported an issue ([1]) where the following warning appears in kernel dmesg: [ 60.643604] verifier backtracking bug [ 60.643635] WARNING: CPU: 10 PID: 2315 at kernel/bpf/verifier.c:4302 __mark_chain_precision+0x3a6c/0x3e10 [ 60.648428] Modules linked in: bpf_testmod(OE) [ 60.650471] CPU: 10 UID: 0 PID: 2315 Comm: test_progs Tainted: G OE 6.15.0-rc4-gef11287f8289-dirty #327 PREEMPT(full) [ 60.654385] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE [ 60.656682] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 60.660475] RIP: 0010:__mark_chain_precision+0x3a6c/0x3e10 [ 60.662814] Code: 5a 30 84 89 ea e8 c4 d9 01 00 80 3d 3e 7d d8 04 00 0f 85 60 fa ff ff c6 05 31 7d d8 04 01 48 c7 c7 00 58 30 84 e8 c4 06 a5 ff <0f> 0b e9 46 fa ff ff 48 ... [ 60.668720] RSP: 0018:ffff888116cc7298 EFLAGS: 00010246 [ 60.671075] RAX: 54d70e82dfd31900 RBX: ffff888115b65e20 RCX: 0000000000000000 [ 60.673659] RDX: 0000000000000001 RSI: 0000000000000004 RDI: 00000000ffffffff [ 60.676241] RBP: 0000000000000400 R08: ffff8881f6f23bd3 R09: 1ffff1103ede477a [ 60.678787] R10: dffffc0000000000 R11: ffffed103ede477b R12: ffff888115b60ae8 [ 60.681420] R13: 1ffff11022b6cbc4 R14: 00000000fffffff2 R15: 0000000000000001 [ 60.684030] FS: 00007fc2aedd80c0(0000) GS:ffff88826fa8a000(0000) knlGS:0000000000000000 [ 60.686837] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 60.689027] CR2: 000056325369e000 CR3: 000000011088b002 CR4: 0000000000370ef0 [ 60.691623] Call Trace: [ 60.692821] <TASK> [ 60.693960] ? __pfx_verbose+0x10/0x10 [ 60.695656] ? __pfx_disasm_kfunc_name+0x10/0x10 [ 60.697495] check_cond_jmp_op+0x16f7/0x39b0 [ 60.699237] do_check+0x58fa/0xab10 ... Further analysis shows the warning is at line 4302 as below: 4294 /* static subprog call instruction, which 4295 * means that we are exiting current subprog, 4296 * so only r1-r5 could be still requested as 4297 * precise, r0 and r6-r10 or any stack slot in 4298 * the current frame should be zero by now 4299 */ 4300 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4301 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4302 WARN_ONCE(1, "verifier backtracking bug"); 4303 return -EFAULT; 4304 } With the below test (also in the next patch): __used __naked static void __bpf_jmp_r10(void) { asm volatile ( "r2 = 2314885393468386424 ll;" "goto +0;" "if r2 <= r10 goto +3;" "if r1 >= -1835016 goto +0;" "if r2 <= 8 goto +0;" "if r3 <= 0 goto +0;" "exit;" ::: __clobber_all); } SEC("?raw_tp") __naked void bpf_jmp_r10(void) { asm volatile ( "r3 = 0 ll;" "call __bpf_jmp_r10;" "r0 = 0;" "exit;" ::: __clobber_all); } The following is the verifier failure log: 0: (18) r3 = 0x0 ; R3_w=0 2: (85) call pc+2 caller: R10=fp0 callee: frame1: R1=ctx() R3_w=0 R10=fp0 5: frame1: R1=ctx() R3_w=0 R10=fp0 ; asm volatile (" \ @ verifier_precision.c:184 5: (18) r2 = 0x20202000256c6c78 ; frame1: R2_w=0x20202000256c6c78 7: (05) goto pc+0 8: (bd) if r2 <= r10 goto pc+3 ; frame1: R2_w=0x20202000256c6c78 R10=fp0 9: (35) if r1 >= 0xffe3fff8 goto pc+0 ; frame1: R1=ctx() 10: (b5) if r2 <= 0x8 goto pc+0 mark_precise: frame1: last_idx 10 first_idx 0 subseq_idx -1 mark_precise: frame1: regs=r2 stack= before 9: (35) if r1 >= 0xffe3fff8 goto pc+0 mark_precise: frame1: regs=r2 stack= before 8: (bd) if r2 <= r10 goto pc+3 mark_preci ---truncated---

Assessing the Risk of CVE-2025-38279

Access Complexity Graph

The exploitability of CVE-2025-38279 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-38279

No exploitability data is available for CVE-2025-38279.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-38279, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-38279, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-38279 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-38279 does not impact data integrity.
  • Availability: None
    CVE-2025-38279 does not affect system availability.

CVE-2025-38279 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-38279: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-54792 – LocalSend is an open-source app to securely share files and messages with nearby devices over local networks without needing an internet connection...
  • CVE-2025-54424 – 1Panel is a web interface and MCP Server that manages websites, files, containers, databases, and LLMs on a Linux server. In versions 2.0.5 and bel...
  • CVE-2025-54132 – Cursor is a code editor built for programming with AI. In versions below 1.3, Mermaid (which is used to render diagrams) allows embedding images wh...
  • CVE-2025-54131 – Cursor is a code editor built for programming with AI. In versions below 1.3, an attacker can bypass the allow list in auto-run mode with a backtic...
  • CVE-2024-13978 – A vulnerability was found in LibTIFF up to 4.7.0. It has been declared as problematic. Affected by this vulnerability is the function t2p_read_tiff...