CVE-2025-38211
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕔 17 Jul 2025, 17:15 UTC
Originally published on: 🕑 04 Jul 2025, 14:15 UTC
Time between publication and last update: 13 days
CVSS Release:
CVE-2025-38211: In the Linux kernel, the following vulnerability has been resolved: RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last deref") simplified cm_id resource management by freeing cm_id once all references to the cm_id were removed. The references are removed either upon completion of iw_cm event handlers or when the application destroys the cm_id. This commit introduced the use-after-free condition where cm_id_private object could still be in use by event handler works during the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a use-after-free related to destroying CM IDs") addressed this use-after- free by flushing all pending works at the cm_id destruction. However, still another use-after-free possibility remained. It happens with the work objects allocated for each cm_id_priv within alloc_work_entries() during cm_id creation, and subsequently freed in dealloc_work_entries() once all references to the cm_id are removed. If the cm_id's last reference is decremented in the event handler work, the work object for the work itself gets removed, and causes the use- after-free BUG below: BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250 Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091 CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 Workqueue: 0x0 (iw_cm_wq) Call Trace: <TASK> dump_stack_lvl+0x6a/0x90 print_report+0x174/0x554 ? __virt_addr_valid+0x208/0x430 ? __pwq_activate_work+0x1ff/0x250 kasan_report+0xae/0x170 ? __pwq_activate_work+0x1ff/0x250 __pwq_activate_work+0x1ff/0x250 pwq_dec_nr_in_flight+0x8c5/0xfb0 process_one_work+0xc11/0x1460 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x16c/0x240 worker_thread+0x5ef/0xfd0 ? __pfx_worker_thread+0x10/0x10 kthread+0x3b0/0x770 ? __pfx_kthread+0x10/0x10 ? rcu_is_watching+0x11/0xb0 ? _raw_spin_unlock_irq+0x24/0x50 ? rcu_is_watching+0x11/0xb0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 147416: kasan_save_stack+0x2c/0x50 kasan_save_track+0x10/0x30 __kasan_kmalloc+0xa6/0xb0 alloc_work_entries+0xa9/0x260 [iw_cm] iw_cm_connect+0x23/0x4a0 [iw_cm] rdma_connect_locked+0xbfd/0x1920 [rdma_cm] nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma] cma_cm_event_handler+0xae/0x320 [rdma_cm] cma_work_handler+0x106/0x1b0 [rdma_cm] process_one_work+0x84f/0x1460 worker_thread+0x5ef/0xfd0 kthread+0x3b0/0x770 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 Freed by task 147091: kasan_save_stack+0x2c/0x50 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kfree+0x13a/0x4b0 dealloc_work_entries+0x125/0x1f0 [iw_cm] iwcm_deref_id+0x6f/0xa0 [iw_cm] cm_work_handler+0x136/0x1ba0 [iw_cm] process_one_work+0x84f/0x1460 worker_thread+0x5ef/0xfd0 kthread+0x3b0/0x770 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 Last potentially related work creation: kasan_save_stack+0x2c/0x50 kasan_record_aux_stack+0xa3/0xb0 __queue_work+0x2ff/0x1390 queue_work_on+0x67/0xc0 cm_event_handler+0x46a/0x820 [iw_cm] siw_cm_upcall+0x330/0x650 [siw] siw_cm_work_handler+0x6b9/0x2b20 [siw] process_one_work+0x84f/0x1460 worker_thread+0x5ef/0xfd0 kthread+0x3b0/0x770 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 This BUG is reproducible by repeating the blktests test case nvme/061 for the rdma transport and the siw driver. To avoid the use-after-free of cm_id_private work objects, ensure that the last reference to the cm_id is decremented not in the event handler works, but in the cm_id destruction context. For that purpose, mo ---truncated---
The exploitability of CVE-2025-38211 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-38211.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-38211, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-38211, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.