CVE-2025-38203 Vulnerability Analysis & Exploit Details

CVE-2025-38203
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2025-38203 Details

Status: Awaiting Analysis

Last updated: 🕕 03 Nov 2025, 18:16 UTC
Originally published on: 🕑 04 Jul 2025, 14:15 UTC

Time between publication and last update: 122 days

CVSS Release:

CVE-2025-38203 Vulnerability Summary

CVE-2025-38203: In the Linux kernel, the following vulnerability has been resolved: jfs: Fix null-ptr-deref in jfs_ioc_trim [ Syzkaller Report ] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000087: 0000 [#1 KASAN: null-ptr-deref in range [0x0000000000000438-0x000000000000043f] CPU: 2 UID: 0 PID: 10614 Comm: syz-executor.0 Not tainted 6.13.0-rc6-gfbfd64d25c7a-dirty #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Sched_ext: serialise (enabled+all), task: runnable_at=-30ms RIP: 0010:jfs_ioc_trim+0x34b/0x8f0 Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93 90 82 fe ff 4c 89 ff 31 f6 RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206 RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001 RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000 R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438 FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die_body+0x61/0xb0 ? die_addr+0xb1/0xe0 ? exc_general_protection+0x333/0x510 ? asm_exc_general_protection+0x26/0x30 ? jfs_ioc_trim+0x34b/0x8f0 jfs_ioctl+0x3c8/0x4f0 ? __pfx_jfs_ioctl+0x10/0x10 ? __pfx_jfs_ioctl+0x10/0x10 __se_sys_ioctl+0x269/0x350 ? __pfx___se_sys_ioctl+0x10/0x10 ? do_syscall_64+0xfb/0x210 do_syscall_64+0xee/0x210 ? syscall_exit_to_user_mode+0x1e0/0x330 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fe51f4903ad Code: c3 e8 a7 2b 00 00 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d RSP: 002b:00007fe5202250c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fe51f5cbf80 RCX: 00007fe51f4903ad RDX: 0000000020000680 RSI: 00000000c0185879 RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe520225640 R13: 000000000000000e R14: 00007fe51f44fca0 R15: 00007fe52021d000 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:jfs_ioc_trim+0x34b/0x8f0 Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93 90 82 fe ff 4c 89 ff 31 f6 RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206 RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001 RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000 R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438 FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Kernel panic - not syncing: Fatal exception [ Analysis ] We believe that we have found a concurrency bug in the `fs/jfs` module that results in a null pointer dereference. There is a closely related issue which has been fixed: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6c1b3599b2feb5c7291f5ac3a36e5fa7cedb234 ... but, unfortunately, the accepted patch appears to still be susceptible to a null pointer dereference under some interleavings. To trigger the bug, we think that `JFS_SBI(ipbmap->i_sb)->bmap` is set to NULL in `dbFreeBits` and then dereferenced in `jfs_ioc_trim`. This bug manifests quite rarely under normal circumstances, but is triggereable from a syz-program.

Assessing the Risk of CVE-2025-38203

Access Complexity Graph

The exploitability of CVE-2025-38203 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2025-38203

No exploitability data is available for CVE-2025-38203.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2025-38203, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2025-38203, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2025-38203 does not compromise confidentiality.
  • Integrity: None
    CVE-2025-38203 does not impact data integrity.
  • Availability: None
    CVE-2025-38203 does not affect system availability.

CVE-2025-38203 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2025-38203: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-13735 – Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program fi...
  • CVE-2025-9558 – There is a potential OOB Write vulnerability in the gen_prov_start function in pb_adv.c. The full length of the received data is copied into the li...
  • CVE-2025-9557 – ‭An out-of-bound write can lead to an arbitrary code execution. Even on devices with some form of memory protection, this can still lead to‬ ‭a cra...
  • CVE-2025-59820 – In KDE Krita before 5.2.13, loading a manipulated TGA file could result in a heap-based buffer overflow in plugins/impex/tga/kis_tga_import.cpp (ak...
  • CVE-2025-55174 – In KDE Skanpage before 25.08.0, an attempt at file overwrite can result in the contents of the new file at the beginning followed by the partial co...