CVE-2025-38153
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 03 Jul 2025, 09:15 UTC
CVSS Release:
CVE-2025-38153: In the Linux kernel, the following vulnerability has been resolved: net: usb: aqc111: fix error handling of usbnet read calls Syzkaller, courtesy of syzbot, identified an error (see report [1]) in aqc111 driver, caused by incomplete sanitation of usb read calls' results. This problem is quite similar to the one fixed in commit 920a9fa27e78 ("net: asix: add proper error handling of usb read errors"). For instance, usbnet_read_cmd() may read fewer than 'size' bytes, even if the caller expected the full amount, and aqc111_read_cmd() will not check its result properly. As [1] shows, this may lead to MAC address in aqc111_bind() being only partly initialized, triggering KMSAN warnings. Fix the issue by verifying that the number of bytes read is as expected and not less. [1] Partial syzbot report: BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:208 [inline] BUG: KMSAN: uninit-value in usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 is_valid_ether_addr include/linux/etherdevice.h:208 [inline] usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] really_probe+0x4d1/0xd90 drivers/base/dd.c:658 __driver_probe_device+0x268/0x380 drivers/base/dd.c:800 ... Uninit was stored to memory at: dev_addr_mod+0xb0/0x550 net/core/dev_addr_lists.c:582 __dev_addr_set include/linux/netdevice.h:4874 [inline] eth_hw_addr_set include/linux/etherdevice.h:325 [inline] aqc111_bind+0x35f/0x1150 drivers/net/usb/aqc111.c:717 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 ... Uninit was stored to memory at: ether_addr_copy include/linux/etherdevice.h:305 [inline] aqc111_read_perm_mac drivers/net/usb/aqc111.c:663 [inline] aqc111_bind+0x794/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] ... Local variable buf.i created at: aqc111_read_perm_mac drivers/net/usb/aqc111.c:656 [inline] aqc111_bind+0x221/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772
The exploitability of CVE-2025-38153 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-38153.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-38153, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-38153, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.