CVE-2025-38010
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 18 Jun 2025, 10:15 UTC
CVSS Release:
CVE-2025-38010: In the Linux kernel, the following vulnerability has been resolved: phy: tegra: xusb: Use a bitmask for UTMI pad power state tracking The current implementation uses bias_pad_enable as a reference count to manage the shared bias pad for all UTMI PHYs. However, during system suspension with connected USB devices, multiple power-down requests for the UTMI pad result in a mismatch in the reference count, which in turn produces warnings such as: [ 237.762967] WARNING: CPU: 10 PID: 1618 at tegra186_utmi_pad_power_down+0x160/0x170 [ 237.763103] Call trace: [ 237.763104] tegra186_utmi_pad_power_down+0x160/0x170 [ 237.763107] tegra186_utmi_phy_power_off+0x10/0x30 [ 237.763110] phy_power_off+0x48/0x100 [ 237.763113] tegra_xusb_enter_elpg+0x204/0x500 [ 237.763119] tegra_xusb_suspend+0x48/0x140 [ 237.763122] platform_pm_suspend+0x2c/0xb0 [ 237.763125] dpm_run_callback.isra.0+0x20/0xa0 [ 237.763127] __device_suspend+0x118/0x330 [ 237.763129] dpm_suspend+0x10c/0x1f0 [ 237.763130] dpm_suspend_start+0x88/0xb0 [ 237.763132] suspend_devices_and_enter+0x120/0x500 [ 237.763135] pm_suspend+0x1ec/0x270 The root cause was traced back to the dynamic power-down changes introduced in commit a30951d31b25 ("xhci: tegra: USB2 pad power controls"), where the UTMI pad was being powered down without verifying its current state. This unbalanced behavior led to discrepancies in the reference count. To rectify this issue, this patch replaces the single reference counter with a bitmask, renamed to utmi_pad_enabled. Each bit in the mask corresponds to one of the four USB2 PHYs, allowing us to track each pad's enablement status individually. With this change: - The bias pad is powered on only when the mask is clear. - Each UTMI pad is powered on or down based on its corresponding bit in the mask, preventing redundant operations. - The overall power state of the shared bias pad is maintained correctly during suspend/resume cycles. The mutex used to prevent race conditions during UTMI pad enable/disable operations has been moved from the tegra186_utmi_bias_pad_power_on/off functions to the parent functions tegra186_utmi_pad_power_on/down. This change ensures that there are no race conditions when updating the bitmask.
The exploitability of CVE-2025-38010 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-38010.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-38010, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-38010, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.