CVE-2025-37903
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕗 21 May 2025, 20:25 UTC
Originally published on: 🕓 20 May 2025, 16:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2025-37903: In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix slab-use-after-free in hdcp The HDCP code in amdgpu_dm_hdcp.c copies pointers to amdgpu_dm_connector objects without incrementing the kref reference counts. When using a USB-C dock, and the dock is unplugged, the corresponding amdgpu_dm_connector objects are freed, creating dangling pointers in the HDCP code. When the dock is plugged back, the dangling pointers are dereferenced, resulting in a slab-use-after-free: [ 66.775837] BUG: KASAN: slab-use-after-free in event_property_validate+0x42f/0x6c0 [amdgpu] [ 66.776171] Read of size 4 at addr ffff888127804120 by task kworker/0:1/10 [ 66.776179] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.14.0-rc7-00180-g54505f727a38-dirty #233 [ 66.776183] Hardware name: HP HP Pavilion Aero Laptop 13-be0xxx/8916, BIOS F.17 12/18/2024 [ 66.776186] Workqueue: events event_property_validate [amdgpu] [ 66.776494] Call Trace: [ 66.776496] <TASK> [ 66.776497] dump_stack_lvl+0x70/0xa0 [ 66.776504] print_report+0x175/0x555 [ 66.776507] ? __virt_addr_valid+0x243/0x450 [ 66.776510] ? kasan_complete_mode_report_info+0x66/0x1c0 [ 66.776515] kasan_report+0xeb/0x1c0 [ 66.776518] ? event_property_validate+0x42f/0x6c0 [amdgpu] [ 66.776819] ? event_property_validate+0x42f/0x6c0 [amdgpu] [ 66.777121] __asan_report_load4_noabort+0x14/0x20 [ 66.777124] event_property_validate+0x42f/0x6c0 [amdgpu] [ 66.777342] ? __lock_acquire+0x6b40/0x6b40 [ 66.777347] ? enable_assr+0x250/0x250 [amdgpu] [ 66.777571] process_one_work+0x86b/0x1510 [ 66.777575] ? pwq_dec_nr_in_flight+0xcf0/0xcf0 [ 66.777578] ? assign_work+0x16b/0x280 [ 66.777580] ? lock_is_held_type+0xa3/0x130 [ 66.777583] worker_thread+0x5c0/0xfa0 [ 66.777587] ? process_one_work+0x1510/0x1510 [ 66.777588] kthread+0x3a2/0x840 [ 66.777591] ? kthread_is_per_cpu+0xd0/0xd0 [ 66.777594] ? trace_hardirqs_on+0x4f/0x60 [ 66.777597] ? _raw_spin_unlock_irq+0x27/0x60 [ 66.777599] ? calculate_sigpending+0x77/0xa0 [ 66.777602] ? kthread_is_per_cpu+0xd0/0xd0 [ 66.777605] ret_from_fork+0x40/0x90 [ 66.777607] ? kthread_is_per_cpu+0xd0/0xd0 [ 66.777609] ret_from_fork_asm+0x11/0x20 [ 66.777614] </TASK> [ 66.777643] Allocated by task 10: [ 66.777646] kasan_save_stack+0x39/0x60 [ 66.777649] kasan_save_track+0x14/0x40 [ 66.777652] kasan_save_alloc_info+0x37/0x50 [ 66.777655] __kasan_kmalloc+0xbb/0xc0 [ 66.777658] __kmalloc_cache_noprof+0x1c8/0x4b0 [ 66.777661] dm_dp_add_mst_connector+0xdd/0x5c0 [amdgpu] [ 66.777880] drm_dp_mst_port_add_connector+0x47e/0x770 [drm_display_helper] [ 66.777892] drm_dp_send_link_address+0x1554/0x2bf0 [drm_display_helper] [ 66.777901] drm_dp_check_and_send_link_address+0x187/0x1f0 [drm_display_helper] [ 66.777909] drm_dp_mst_link_probe_work+0x2b8/0x410 [drm_display_helper] [ 66.777917] process_one_work+0x86b/0x1510 [ 66.777919] worker_thread+0x5c0/0xfa0 [ 66.777922] kthread+0x3a2/0x840 [ 66.777925] ret_from_fork+0x40/0x90 [ 66.777927] ret_from_fork_asm+0x11/0x20 [ 66.777932] Freed by task 1713: [ 66.777935] kasan_save_stack+0x39/0x60 [ 66.777938] kasan_save_track+0x14/0x40 [ 66.777940] kasan_save_free_info+0x3b/0x60 [ 66.777944] __kasan_slab_free+0x52/0x70 [ 66.777946] kfree+0x13f/0x4b0 [ 66.777949] dm_dp_mst_connector_destroy+0xfa/0x150 [amdgpu] [ 66.778179] drm_connector_free+0x7d/0xb0 [ 66.778184] drm_mode_object_put.part.0+0xee/0x160 [ 66.778188] drm_mode_object_put+0x37/0x50 [ 66.778191] drm_atomic_state_default_clear+0x220/0xd60 [ 66.778194] __drm_atomic_state_free+0x16e/0x2a0 [ 66.778197] drm_mode_atomic_ioctl+0x15ed/0x2ba0 [ 66.778200] drm_ioctl_kernel+0x17a/0x310 [ 66.778203] drm_ioctl+0x584/0xd10 [ 66.778206] amdgpu_drm_ioctl+0xd2/0x1c0 [amdgpu] [ 66.778375] __x64_sys_ioctl+0x139/0x1a0 [ 66.778378] x64_sys_call+0xee7/0xfb0 [ 66.778381] ---truncated---
The exploitability of CVE-2025-37903 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-37903.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-37903, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-37903, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.