CVE-2025-23150
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕜 02 May 2025, 13:53 UTC
Originally published on: 🕐 01 May 2025, 13:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2025-23150: In the Linux kernel, the following vulnerability has been resolved: ext4: fix off-by-one error in do_split Syzkaller detected a use-after-free issue in ext4_insert_dentry that was caused by out-of-bounds access due to incorrect splitting in do_split. BUG: KASAN: use-after-free in ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109 Write of size 251 at addr ffff888074572f14 by task syz-executor335/5847 CPU: 0 UID: 0 PID: 5847 Comm: syz-executor335 Not tainted 6.12.0-rc6-syzkaller-00318-ga9cda7c0ffed #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 __asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106 ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109 add_dirent_to_buf+0x3d9/0x750 fs/ext4/namei.c:2154 make_indexed_dir+0xf98/0x1600 fs/ext4/namei.c:2351 ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2455 ext4_add_nondir+0x8d/0x290 fs/ext4/namei.c:2796 ext4_symlink+0x920/0xb50 fs/ext4/namei.c:3431 vfs_symlink+0x137/0x2e0 fs/namei.c:4615 do_symlinkat+0x222/0x3a0 fs/namei.c:4641 __do_sys_symlink fs/namei.c:4662 [inline] __se_sys_symlink fs/namei.c:4660 [inline] __x64_sys_symlink+0x7a/0x90 fs/namei.c:4660 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> The following loop is located right above 'if' statement. for (i = count-1; i >= 0; i--) { /* is more than half of this entry in 2nd half of the block? */ if (size + map[i].size/2 > blocksize/2) break; size += map[i].size; move++; } 'i' in this case could go down to -1, in which case sum of active entries wouldn't exceed half the block size, but previous behaviour would also do split in half if sum would exceed at the very last block, which in case of having too many long name files in a single block could lead to out-of-bounds access and following use-after-free. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
The exploitability of CVE-2025-23150 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-23150.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-23150, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-23150, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.