CVE-2025-22035
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕗 17 Apr 2025, 20:22 UTC
Originally published on: 🕒 16 Apr 2025, 15:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2025-22035: In the Linux kernel, the following vulnerability has been resolved: tracing: Fix use-after-free in print_graph_function_flags during tracer switching Kairui reported a UAF issue in print_graph_function_flags() during ftrace stress testing [1]. This issue can be reproduced if puting a 'mdelay(10)' after 'mutex_unlock(&trace_types_lock)' in s_start(), and executing the following script: $ echo function_graph > current_tracer $ cat trace > /dev/null & $ sleep 5 # Ensure the 'cat' reaches the 'mdelay(10)' point $ echo timerlat > current_tracer The root cause lies in the two calls to print_graph_function_flags within print_trace_line during each s_show(): * One through 'iter->trace->print_line()'; * Another through 'event->funcs->trace()', which is hidden in print_trace_fmt() before print_trace_line returns. Tracer switching only updates the former, while the latter continues to use the print_line function of the old tracer, which in the script above is print_graph_function_flags. Moreover, when switching from the 'function_graph' tracer to the 'timerlat' tracer, s_start only calls graph_trace_close of the 'function_graph' tracer to free 'iter->private', but does not set it to NULL. This provides an opportunity for 'event->funcs->trace()' to use an invalid 'iter->private'. To fix this issue, set 'iter->private' to NULL immediately after freeing it in graph_trace_close(), ensuring that an invalid pointer is not passed to other tracers. Additionally, clean up the unnecessary 'iter->private = NULL' during each 'cat trace' when using wakeup and irqsoff tracers. [1] https://lore.kernel.org/all/20231112150030.84609-1-ryncsn@gmail.com/
The exploitability of CVE-2025-22035 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-22035.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-22035, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-22035, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.